Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 8/2017

28-07-2017

Inverse Thermal Analysis of Alloy 690 Laser and Hybrid Laser–GMA Welds Using Solidification-Boundary Constraints

Author: S. G. Lambrakos

Published in: Journal of Materials Engineering and Performance | Issue 8/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An inverse thermal analysis of Alloy 690 laser and hybrid laser–GMA welds is presented that uses numerical–analytical basis functions and boundary constraints based on measured solidification cross sections. In particular, the inverse analysis procedure uses three-dimensional constraint conditions such that two-dimensional projections of calculated solidification boundaries are constrained to map within experimentally measured solidification cross sections. Temperature histories calculated by this analysis are input data for computational procedures that predict solid-state phase transformations and mechanical response. These temperature histories can be used for inverse thermal analysis of welds corresponding to other welding processes whose process conditions are within similar regimes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Allen, J. Busby, M. Meyer, and D. Petti, Materials Challenges for Nuclear Systems, Mater. Today, 2010, 13(12), p 14–23CrossRef T. Allen, J. Busby, M. Meyer, and D. Petti, Materials Challenges for Nuclear Systems, Mater. Today, 2010, 13(12), p 14–23CrossRef
2.
go back to reference J.J. Blecher, T.A. Palmer, and T. Debroy, Porosity in Thick Section Alloy 690 Welds—Experiments, Modeling, Mechanism, and Remedy, Weld. Res., 2016, 95, p 17–26 J.J. Blecher, T.A. Palmer, and T. Debroy, Porosity in Thick Section Alloy 690 Welds—Experiments, Modeling, Mechanism, and Remedy, Weld. Res., 2016, 95, p 17–26
3.
go back to reference A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, 2005CrossRef A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, 2005CrossRef
4.
go back to reference C.R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002CrossRef C.R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002CrossRef
5.
go back to reference A.G. Ramm, Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering, Springer Science, New York, 2005 A.G. Ramm, Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering, Springer Science, New York, 2005
6.
go back to reference J.V. Beck, B. Blackwell, and C.R. St, Clair, Inverse Heat Conduction: IlI-Posed Problems, Wiley Interscience, New York, 1995 J.V. Beck, B. Blackwell, and C.R. St, Clair, Inverse Heat Conduction: IlI-Posed Problems, Wiley Interscience, New York, 1995
7.
8.
go back to reference M.N. Ozisik and H.R.B. Orlande, Inverse Heat Transfer, Fundamentals and Applications, Taylor and Francis, New York, 2000 M.N. Ozisik and H.R.B. Orlande, Inverse Heat Transfer, Fundamentals and Applications, Taylor and Francis, New York, 2000
9.
go back to reference K. Kurpisz and A.J. Nowak, Inverse Thermal Problems, Computational Mechanics Publications, Boston, 1995 K. Kurpisz and A.J. Nowak, Inverse Thermal Problems, Computational Mechanics Publications, Boston, 1995
10.
go back to reference J.V. Beck, in Inverse Problems in Heat Transfer with Application to Solidification and Welding, ed. by V. M. Rappaz, M.R. Ozgu and K.W. Mahin. Modeling of Casting, Welding and Advanced Solidification Processes (The Minerals, Metals and Materials Society, Pittsburgh, 1991), p. 427–437. J.V. Beck, in Inverse Problems in Heat Transfer with Application to Solidification and Welding, ed. by V. M. Rappaz, M.R. Ozgu and K.W. Mahin. Modeling of Casting, Welding and Advanced Solidification Processes (The Minerals, Metals and Materials Society, Pittsburgh, 1991), p. 427–437.
11.
go back to reference J.V. Beck, in Inverse Problems in Heat Transfer, ed. by G.E. Tupholme, A.S. Wood. Mathematics of Heat Transfer (Clarendon Press, Wotton-under-Edge, 1998), p. 13–24. J.V. Beck, in Inverse Problems in Heat Transfer, ed. by G.E. Tupholme, A.S. Wood. Mathematics of Heat Transfer (Clarendon Press, Wotton-under-Edge, 1998), p. 13–24.
12.
go back to reference A.N. Tikhonov, Inverse Problems in Heat Conduction, J. Eng. Phys., 1975, 29(1), p 816–820CrossRef A.N. Tikhonov, Inverse Problems in Heat Conduction, J. Eng. Phys., 1975, 29(1), p 816–820CrossRef
13.
go back to reference O.M. Alifanov, Solution of an Inverse Problem of Heat-Conduction by Iterative Methods, J. Eng. Phys., 1974, 26(4), p 471–476CrossRef O.M. Alifanov, Solution of an Inverse Problem of Heat-Conduction by Iterative Methods, J. Eng. Phys., 1974, 26(4), p 471–476CrossRef
14.
go back to reference O.M. Alifanov and V.Y. Mikhailov, Solution of the Overdetermined Inverse Problem of Thermal Conductivity Involving Inaccurate Data, High Temp., 1985, 23(1), p 112–117 O.M. Alifanov and V.Y. Mikhailov, Solution of the Overdetermined Inverse Problem of Thermal Conductivity Involving Inaccurate Data, High Temp., 1985, 23(1), p 112–117
15.
go back to reference E.A. Artyukhin and A.V. Nenarokomov, Coefficient Inverse Heat Conduction Problem, J. Eng. Phys., 1988, 53, p 1085–1090CrossRef E.A. Artyukhin and A.V. Nenarokomov, Coefficient Inverse Heat Conduction Problem, J. Eng. Phys., 1988, 53, p 1085–1090CrossRef
16.
go back to reference T.J. Martin and G.S. Dulikravich, Inverse Determination of Steady Convective Local Heat Transfer Coefficients, ASME J. Heat Transfer, 1998, 120, p 328–334CrossRef T.J. Martin and G.S. Dulikravich, Inverse Determination of Steady Convective Local Heat Transfer Coefficients, ASME J. Heat Transfer, 1998, 120, p 328–334CrossRef
17.
go back to reference S.G. Lambrakos and S.G. Michopoulos, Algorithms for Inverse Analysis of Heat Deposition Processes. Mathematical Modelling of Weld Phenomena, Volume 8, 847, Published by Verlag der Technischen Universite Graz, Austria (2007). S.G. Lambrakos and S.G. Michopoulos, Algorithms for Inverse Analysis of Heat Deposition Processes. Mathematical Modelling of Weld Phenomena, Volume 8, 847, Published by Verlag der Technischen Universite Graz, Austria (2007).
18.
go back to reference S.G. Lambrakos and J.O. Milewski, Analysis of Welding and Heat Deposition Processes using an Inverse-Problem Approach, Mathematical Modelling of Weld Phenomena, 7, 1025, Publishied by Verlag der Technischen Universite Graz, Austria, 2005, p. 1025–1055. S.G. Lambrakos and J.O. Milewski, Analysis of Welding and Heat Deposition Processes using an Inverse-Problem Approach, Mathematical Modelling of Weld Phenomena, 7, 1025, Publishied by Verlag der Technischen Universite Graz, Austria, 2005, p. 1025–1055.
19.
go back to reference S.G. Lambrakos, Inverse Thermal Analysis of 304L Stainless Steel Laser Welds, J. Mater. Eng. And Perform., 2013, 22(8), p 2141 S.G. Lambrakos, Inverse Thermal Analysis of 304L Stainless Steel Laser Welds, J. Mater. Eng. And Perform., 2013, 22(8), p 2141
20.
go back to reference S.G. Lambrakos, Inverse Thermal Analysis of Stainless Steel Deep-Penetration Welds Using Volumetric Constraints. J. Mater. Eng. Perform. 23(6), 2219–2232. doi:10.1007/s11665-014-1023-7. S.G. Lambrakos, Inverse Thermal Analysis of Stainless Steel Deep-Penetration Welds Using Volumetric Constraints. J. Mater. Eng. Perform. 23(6), 2219–2232. doi:10.​1007/​s11665-014-1023-7.
21.
go back to reference S.G. Lambrakos, Inverse Thermal Analysis of Welds Using Multiple Constraints and Relaxed Parameter Optimization, J. Mater. Eng. Perform., 2015, 24(8), p 2925–2936CrossRef S.G. Lambrakos, Inverse Thermal Analysis of Welds Using Multiple Constraints and Relaxed Parameter Optimization, J. Mater. Eng. Perform., 2015, 24(8), p 2925–2936CrossRef
22.
go back to reference D. Rosenthal, The Theory of Moving Sources of Heat and its Application to Metal Treatments, Trans. ASME, 1946, 68, p 849–866 D. Rosenthal, The Theory of Moving Sources of Heat and its Application to Metal Treatments, Trans. ASME, 1946, 68, p 849–866
23.
go back to reference J. Goldak, A. Chakravarti, and M. Bibby, A New Finite Element Model for Welding Heat Source, Metall. Trans. B, 1984, 15, p 299–305CrossRef J. Goldak, A. Chakravarti, and M. Bibby, A New Finite Element Model for Welding Heat Source, Metall. Trans. B, 1984, 15, p 299–305CrossRef
24.
go back to reference R.O. Myhr and O. Grong, Acta Metall. Mater. 38, 449–460 (1990). R.O. Myhr and O. Grong, Acta Metall. Mater. 38, 449–460 (1990).
25.
go back to reference O. Grong, Materials Modelling Series, Metallurgical Modelling of Welding, Vol Chapter 2, 2nd ed., H.K.D.H. Bhadeshia, Ed., The Institute of Materials, London, 1997, p 1–115 O. Grong, Materials Modelling Series, Metallurgical Modelling of Welding, Vol Chapter 2, 2nd ed., H.K.D.H. Bhadeshia, Ed., The Institute of Materials, London, 1997, p 1–115
26.
go back to reference R.C. Reed and H.K.D.H. Bhadeshia, A Simple Model For Multipass Welds, Acta Metall. Mater., 1994, 42(11), p 3663–3678CrossRef R.C. Reed and H.K.D.H. Bhadeshia, A Simple Model For Multipass Welds, Acta Metall. Mater., 1994, 42(11), p 3663–3678CrossRef
27.
go back to reference V.A. Karkhin, P.N. Homich and V.G. Michailov, “Models for Volume Heat Sources and Functional-Analytic Technique for Calculating the Temperature Fields in Butt Welding, ‘Mathematical Modelling of Weld Phenomena,’ Volume 8, 847, Published by Verlag der Technischen Universite Graz, Austria (2007). V.A. Karkhin, P.N. Homich and V.G. Michailov, “Models for Volume Heat Sources and Functional-Analytic Technique for Calculating the Temperature Fields in Butt Welding, ‘Mathematical Modelling of Weld Phenomena,’ Volume 8, 847, Published by Verlag der Technischen Universite Graz, Austria (2007).
28.
go back to reference I.S. Leoveanu, G. Zgura and D. Birsan, “Modeling the Heat and Fluid Flow in the Welded Pool,” Bulletin of the Transsilvania University of Brasov, Vol. 3, pp. 363–368, ISSN 1223-9631 (2007). I.S. Leoveanu, G. Zgura and D. Birsan, “Modeling the Heat and Fluid Flow in the Welded Pool,” Bulletin of the Transsilvania University of Brasov, Vol. 3, pp. 363–368, ISSN 1223-9631 (2007).
29.
go back to reference I.S. Leoveanu and G. Zgura, in Modelling the Heat and Fluid Flow in the Welded Pool from High Power Arc Sources, ed. by C. Lee, J-B. Lee, D-H. Park, S-J. Na. Materials Science Forum, Vols. 580–582, pp. 443–446 (2008). I.S. Leoveanu and G. Zgura, in Modelling the Heat and Fluid Flow in the Welded Pool from High Power Arc Sources, ed. by C. Lee, J-B. Lee, D-H. Park, S-J. Na. Materials Science Forum, Vols. 580–582, pp. 443–446 (2008).
30.
go back to reference S.G. Lambrakos, Parametric Modeling of Welding Processes Using Numerical-Analytical Basis Functions and Equivalent Scource Distributions, J. Mater. Eng. Perform., 2016, 25(4), p 1360–1375CrossRef S.G. Lambrakos, Parametric Modeling of Welding Processes Using Numerical-Analytical Basis Functions and Equivalent Scource Distributions, J. Mater. Eng. Perform., 2016, 25(4), p 1360–1375CrossRef
Metadata
Title
Inverse Thermal Analysis of Alloy 690 Laser and Hybrid Laser–GMA Welds Using Solidification-Boundary Constraints
Author
S. G. Lambrakos
Publication date
28-07-2017
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 8/2017
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2838-9

Other articles of this Issue 8/2017

Journal of Materials Engineering and Performance 8/2017 Go to the issue

Premium Partners