Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 5-6/2021

04-07-2021 | ORIGINAL ARTICLE

Investigating governing parameters influencing solidification process in pulsed laser micro-welding of AISI 316L thin foils using finite element method

Authors: Hamed Sheikhbahaee, Mohammad Reza Pakmanesh, S. Javid Mirahmadi, Saeed Asghari

Published in: The International Journal of Advanced Manufacturing Technology | Issue 5-6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This research aimed to study the governing parameters influencing the solidification of AISI 316L thin foils during pulsed laser micro-welding in the lap-joint configuration. Therefore, a three-dimensional finite element model was developed to investigate the effects of power, pulse duration, and frequency of the laser beam on the governing parameters of the microstructure at a constant speed. Moreover, to consider the final microstructure as well as verify the numerical results, a set of experiments was designed and carried out based on the response surface method. The results show that the pulse time has the most significant effect on the temperature gradient and solidification rate, and consequently on the cooling rate and morphological parameter. Furthermore, the pulse time and peak power have a significant interaction effect on the temperature gradient. Although the pulse time and the peak power have a significant effect on the solidification rate at the weld centerline as well as the fusion line, they show a considerable interaction effect just in the weld centerline. The cooling rate and morphological parameters, two governing solidification parameters, are mostly and minimally influenced by the pulse time and frequency. Increasing the pulse time, power, and frequency decreases the cooling rate, resulting in a coarser microstructure. At the same time, increasing the processing parameters decreases the morphological parameter in the weld centerline; however, a slight increase occurs at the fusion line. A comparison of the numerical and experimental results showed a good agreement.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cheng Q, Rumley S, Bahadori M, Bergman K (2018) Photonic switching in high performance datacenters. Opt Express 26(12):16022–16043CrossRef Cheng Q, Rumley S, Bahadori M, Bergman K (2018) Photonic switching in high performance datacenters. Opt Express 26(12):16022–16043CrossRef
2.
go back to reference Pakmanesh M, Shamanian M, Ashrafi A (2020) Effects of Nd: YAG pulsed laser welding parameters on the electrochemical corrosion properties of carbon-coated 316L foils in a simulated PEMFC environment. Trans Indian Inst Metals 73(1):169–180CrossRef Pakmanesh M, Shamanian M, Ashrafi A (2020) Effects of Nd: YAG pulsed laser welding parameters on the electrochemical corrosion properties of carbon-coated 316L foils in a simulated PEMFC environment. Trans Indian Inst Metals 73(1):169–180CrossRef
3.
go back to reference Kim J, Kim S, Kim K, Jung W, Youn D, Lee J, Ki H (2016) Effect of beam size in laser welding of ultra-thin stainless steel foils. J Mater Process Technol 233:125–134CrossRef Kim J, Kim S, Kim K, Jung W, Youn D, Lee J, Ki H (2016) Effect of beam size in laser welding of ultra-thin stainless steel foils. J Mater Process Technol 233:125–134CrossRef
4.
go back to reference Pakmanesh MR, Shamanian M (2017) Effects of process parameters on the tensile-shear strength of pulsed laser welded thin 316L stainless steel foils. Trans Indian Inst Metals 70(9):2389–2398CrossRef Pakmanesh MR, Shamanian M (2017) Effects of process parameters on the tensile-shear strength of pulsed laser welded thin 316L stainless steel foils. Trans Indian Inst Metals 70(9):2389–2398CrossRef
5.
go back to reference Pakmanesh M, Shamanian M (2018) Optimization of pulsed laser welding process parameters in order to attain minimum underfill and undercut defects in thin 316L stainless steel foils. Opt Laser Technol 99:30–38CrossRef Pakmanesh M, Shamanian M (2018) Optimization of pulsed laser welding process parameters in order to attain minimum underfill and undercut defects in thin 316L stainless steel foils. Opt Laser Technol 99:30–38CrossRef
6.
go back to reference Torabi A, Kolahan F (2018) Optimizing pulsed Nd: YAG laser beam welding process parameters to attain maximum ultimate tensile strength for thin AISI316L sheet using response surface methodology and simulated annealing algorithm. Opt Laser Technol 103:300–310CrossRef Torabi A, Kolahan F (2018) Optimizing pulsed Nd: YAG laser beam welding process parameters to attain maximum ultimate tensile strength for thin AISI316L sheet using response surface methodology and simulated annealing algorithm. Opt Laser Technol 103:300–310CrossRef
7.
go back to reference Ventrella VA, Berretta JR, De Rossi W (2014) Application of pulsed Nd: YAG laser in thin foil microwelding. Int J Mater Prod Technol 48(1-4):194–204CrossRef Ventrella VA, Berretta JR, De Rossi W (2014) Application of pulsed Nd: YAG laser in thin foil microwelding. Int J Mater Prod Technol 48(1-4):194–204CrossRef
8.
go back to reference Rong Y, Huang Y, Zhang G, Mi G, Shao W (2017) Laser beam welding of 316L T-joint: microstructure, microhardness, distortion, and residual stress. Int J Adv Manuf Technol 90(5-8):2263–2270CrossRef Rong Y, Huang Y, Zhang G, Mi G, Shao W (2017) Laser beam welding of 316L T-joint: microstructure, microhardness, distortion, and residual stress. Int J Adv Manuf Technol 90(5-8):2263–2270CrossRef
9.
go back to reference Kumar N, Mukherjee M, Bandyopadhyay A (2017) Comparative study of pulsed Nd: YAG laser welding of AISI 304 and AISI 316 stainless steels. Opt Laser Technol 88:24–39CrossRef Kumar N, Mukherjee M, Bandyopadhyay A (2017) Comparative study of pulsed Nd: YAG laser welding of AISI 304 and AISI 316 stainless steels. Opt Laser Technol 88:24–39CrossRef
10.
go back to reference Solati A, Bani Mostafa Arab N, Mohammadi-Ahmar A, Fazli Shahri HR (2019) Multi-criteria optimization of weld bead in pulsed Nd: YAG laser welding of stainless steel 316. P I Mech Eng E-J Pro 233(2):151–164 Solati A, Bani Mostafa Arab N, Mohammadi-Ahmar A, Fazli Shahri HR (2019) Multi-criteria optimization of weld bead in pulsed Nd: YAG laser welding of stainless steel 316. P I Mech Eng E-J Pro 233(2):151–164
11.
go back to reference Xu H, Guo X, Lei Y, Lin J, Fu H, Xiao R, Huang T, Shin YC (2019) Welding deformation of ultra-thin 316 stainless steel plate using pulsed laser welding process. Opt Laser Technol 119:105583CrossRef Xu H, Guo X, Lei Y, Lin J, Fu H, Xiao R, Huang T, Shin YC (2019) Welding deformation of ultra-thin 316 stainless steel plate using pulsed laser welding process. Opt Laser Technol 119:105583CrossRef
12.
go back to reference Bag S, Trivedi A, De A (2009) Development of a finite element based heat transfer model for conduction mode laser spot welding process using an adaptive volumetric heat source. Int J Therm Sci 48(10):1923–1931CrossRef Bag S, Trivedi A, De A (2009) Development of a finite element based heat transfer model for conduction mode laser spot welding process using an adaptive volumetric heat source. Int J Therm Sci 48(10):1923–1931CrossRef
13.
go back to reference Chang W, Na S-J (2002) A study on the prediction of the laser weld shape with varying heat source equations and the thermal distortion of a small structure in micro-joining. J Mater Process Technol 120(1-3):208–214CrossRef Chang W, Na S-J (2002) A study on the prediction of the laser weld shape with varying heat source equations and the thermal distortion of a small structure in micro-joining. J Mater Process Technol 120(1-3):208–214CrossRef
14.
go back to reference Hozoorbakhsh A, Ismail MIS, Aziz NBA (2015) A computational analysis of heat transfer and fluid flow in high-speed scanning of laser micro-welding. Int Commun Heat Mass Transfer 68:178–187CrossRef Hozoorbakhsh A, Ismail MIS, Aziz NBA (2015) A computational analysis of heat transfer and fluid flow in high-speed scanning of laser micro-welding. Int Commun Heat Mass Transfer 68:178–187CrossRef
15.
go back to reference Roy G, Elmer J, DebRoy T (2006) Mathematical modeling of heat transfer, fluid flow, and solidification during linear welding with a pulsed laser beam. J Appl Phys 100(3):034903CrossRef Roy G, Elmer J, DebRoy T (2006) Mathematical modeling of heat transfer, fluid flow, and solidification during linear welding with a pulsed laser beam. J Appl Phys 100(3):034903CrossRef
16.
go back to reference Shah D, Sewatkar C, Godbole K (2018) Numerical analysis of heat transfer and fluid flow in micro-welding using CFD. In: ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection Shah D, Sewatkar C, Godbole K (2018) Numerical analysis of heat transfer and fluid flow in micro-welding using CFD. In: ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection
17.
go back to reference Shah A, Kumar A, Ramkumar J (2018) Analysis of transient thermo-fluidic behavior of melt pool during spot laser welding of 304 stainless-steel. J Mater Process Technol 256:109–120CrossRef Shah A, Kumar A, Ramkumar J (2018) Analysis of transient thermo-fluidic behavior of melt pool during spot laser welding of 304 stainless-steel. J Mater Process Technol 256:109–120CrossRef
18.
go back to reference Hozoorbakhsh A, Hamdi M, Sarhan AADM, Ismail MIS, Tang C-Y, Tsui GC-P (2019) CFD modelling of weld pool formation and solidification in a laser micro-welding process. Int Commun Heat Mass Transfer 101:58–69CrossRef Hozoorbakhsh A, Hamdi M, Sarhan AADM, Ismail MIS, Tang C-Y, Tsui GC-P (2019) CFD modelling of weld pool formation and solidification in a laser micro-welding process. Int Commun Heat Mass Transfer 101:58–69CrossRef
19.
go back to reference Seiderer J, Hilbers S (2009) Simufact welding tutorial. Simufact-Engineering Seiderer J, Hilbers S (2009) Simufact welding tutorial. Simufact-Engineering
20.
go back to reference Chukkan JR, Vasudevan M, Muthukumaran S, Kumar RR, Chandrasekhar N (2015) Simulation of laser butt welding of AISI 316L stainless steel sheet using various heat sources and experimental validation. J Mater Process Technol 219:48–59CrossRef Chukkan JR, Vasudevan M, Muthukumaran S, Kumar RR, Chandrasekhar N (2015) Simulation of laser butt welding of AISI 316L stainless steel sheet using various heat sources and experimental validation. J Mater Process Technol 219:48–59CrossRef
21.
go back to reference Shao J, Yu G, He X, Li S, Chen R, Zhao Y (2019) Grain size evolution under different cooling rate in laser additive manufacturing of superalloy. Opt Laser Technol 119:105662CrossRef Shao J, Yu G, He X, Li S, Chen R, Zhao Y (2019) Grain size evolution under different cooling rate in laser additive manufacturing of superalloy. Opt Laser Technol 119:105662CrossRef
22.
23.
go back to reference Rai R, Kelly S, Martukanitz R, DebRoy T (2008) A convective heat-transfer model for partial and full penetration keyhole mode laser welding of a structural steel. Metall Mater Trans A 39(1):98–112CrossRef Rai R, Kelly S, Martukanitz R, DebRoy T (2008) A convective heat-transfer model for partial and full penetration keyhole mode laser welding of a structural steel. Metall Mater Trans A 39(1):98–112CrossRef
24.
go back to reference Rai R, Elmer J, Palmer T, DebRoy T (2007) Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti–6Al–4V, 304L stainless steel and vanadium. J Phys D Appl Phys 40(18):5753–5766CrossRef Rai R, Elmer J, Palmer T, DebRoy T (2007) Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti–6Al–4V, 304L stainless steel and vanadium. J Phys D Appl Phys 40(18):5753–5766CrossRef
25.
go back to reference He X, Fuerschbach P, DebRoy T (2003) Heat transfer and fluid flow during laser spot welding of 304 stainless steel. J Phys D Appl Phys 36(12):1388–1398CrossRef He X, Fuerschbach P, DebRoy T (2003) Heat transfer and fluid flow during laser spot welding of 304 stainless steel. J Phys D Appl Phys 36(12):1388–1398CrossRef
26.
go back to reference He X, Elmer J, DebRoy T (2005) Heat transfer and fluid flow in laser microwelding. J Appl Phys 97(8):084909CrossRef He X, Elmer J, DebRoy T (2005) Heat transfer and fluid flow in laser microwelding. J Appl Phys 97(8):084909CrossRef
27.
go back to reference Fotovvati B, Wayne SF, Lewis G, Asadi E (2018) A review on melt-pool characteristics in laser welding of metals. Adv Mater Sci Eng 2018:1–18CrossRef Fotovvati B, Wayne SF, Lewis G, Asadi E (2018) A review on melt-pool characteristics in laser welding of metals. Adv Mater Sci Eng 2018:1–18CrossRef
28.
go back to reference Saboori A, Aversa A, Bosio F, Bassini E, Librera E, De Chirico M, Biamino S, Ugues D, Fino P, Lombardi M (2019) An investigation on the effect of powder recycling on the microstructure and mechanical properties of AISI 316L produced by directed energy deposition. Mater Sci Eng A 766:138360CrossRef Saboori A, Aversa A, Bosio F, Bassini E, Librera E, De Chirico M, Biamino S, Ugues D, Fino P, Lombardi M (2019) An investigation on the effect of powder recycling on the microstructure and mechanical properties of AISI 316L produced by directed energy deposition. Mater Sci Eng A 766:138360CrossRef
29.
go back to reference Ma P, Wu Y, Zhang P, Chen J (2019) Solidification prediction of laser cladding 316L by the finite element simulation. Int J Adv Manuf Technol 103(1-4):957–969CrossRef Ma P, Wu Y, Zhang P, Chen J (2019) Solidification prediction of laser cladding 316L by the finite element simulation. Int J Adv Manuf Technol 103(1-4):957–969CrossRef
30.
go back to reference Huang Y, Ansari M, Asgari H, Farshidianfar MH, Sarker D, Khamesee MB, Toyserkani E (2019) Rapid prediction of real-time thermal characteristics, solidification parameters and microstructure in laser directed energy deposition (powder-fed additive manufacturing). J Mater Process Technol 274:116286CrossRef Huang Y, Ansari M, Asgari H, Farshidianfar MH, Sarker D, Khamesee MB, Toyserkani E (2019) Rapid prediction of real-time thermal characteristics, solidification parameters and microstructure in laser directed energy deposition (powder-fed additive manufacturing). J Mater Process Technol 274:116286CrossRef
Metadata
Title
Investigating governing parameters influencing solidification process in pulsed laser micro-welding of AISI 316L thin foils using finite element method
Authors
Hamed Sheikhbahaee
Mohammad Reza Pakmanesh
S. Javid Mirahmadi
Saeed Asghari
Publication date
04-07-2021
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 5-6/2021
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-07553-x

Other articles of this Issue 5-6/2021

The International Journal of Advanced Manufacturing Technology 5-6/2021 Go to the issue

Premium Partners