Skip to main content
Top

2019 | OriginalPaper | Chapter

7. Investigating the Age of Blood Traces: How Close Are We to Finding the Holy Grail of Forensic Science?

Authors : Maurice Aalders, Leah Wilk

Published in: Emerging Technologies for the Analysis of Forensic Traces

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Blood traces found at crime scenes often comprise pivotal information regarding the events and individuals associated with the crime. Nowadays, even minute amounts of blood allow retrieval of a whole host of such ‘profiling’ information: e.g. diet, life style, age, gender. However, establishing any forensic value of such traces necessitates a veritable connection to a crime. The age of a blood trace, i.e. the time of its deposition, is crucial in this effort. This far-reaching forensic implication as well as the lack of currently validated and accepted trace dating methods, render blood stain age estimation the holy grail of forensic science. In its pursuit, several methods which determine the time since deposition of blood traces by probing different aspects of the trace degradation process have been proposed and explored. The present chapter collates and discusses current research investigating some of these blood trace ageing methods and their practical application in three categories. The first category comprises techniques which require trace sampling and consume these samples in their entirety during the analysis process. Similarly, the techniques in the second category require sampling of the blood trace but leave the sample intact for further analysis. Lastly, the third group of methods requires neither sampling nor contact. This, in turn, allows in situ analysis of the trace in question. The following operational aspects pertaining to these three categories are discussed in more detail: (i) required sample preparation, (ii) practical implementation and (iii) necessary operational skills. These aspects largely determine the suitability for forensic practice. Technology maturity (i.e. practical applicability) is quantified using the Technology Readiness Levels (TRL) as defined by the NASA/Airspace systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Anderson S, Howard B et al (2005) A method for determining the age of a bloodstain. Forensic Sci Int 148(1):37–45CrossRef Anderson S, Howard B et al (2005) A method for determining the age of a bloodstain. Forensic Sci Int 148(1):37–45CrossRef
2.
go back to reference Alrowaithi MA, McCallum NA et al (2014) A method for determining the age of a bloodstain. Forensic Sci Int 234:e30–e31CrossRef Alrowaithi MA, McCallum NA et al (2014) A method for determining the age of a bloodstain. Forensic Sci Int 234:e30–e31CrossRef
3.
go back to reference Anderson SE, Hobbs GR et al (2011) Multivariate analysis for estimating the age of a bloodstain. J Forensic Sci 56(1):186–193CrossRef Anderson SE, Hobbs GR et al (2011) Multivariate analysis for estimating the age of a bloodstain. J Forensic Sci 56(1):186–193CrossRef
4.
go back to reference Simard AM, DesGroseillers L et al (2012) Assessment of RNA stability for age determination of body fluid stains. J Can Soc Forensic Sci 45:179–194CrossRef Simard AM, DesGroseillers L et al (2012) Assessment of RNA stability for age determination of body fluid stains. J Can Soc Forensic Sci 45:179–194CrossRef
5.
go back to reference Qi B, Kong L et al (2013) Gender-related difference in bloodstain RNA ratio stored under uncontrolled room conditions for 28 days. J Forensic Leg Med 20(4):321–325CrossRef Qi B, Kong L et al (2013) Gender-related difference in bloodstain RNA ratio stored under uncontrolled room conditions for 28 days. J Forensic Leg Med 20(4):321–325CrossRef
6.
go back to reference Alshehhi S, McCallum NA et al (2017) Quantification of RNA degradation of blood-specific markers to indicate the age of bloodstains. Forensic Sci Int Genet Suppl Ser 6:e453–e455CrossRef Alshehhi S, McCallum NA et al (2017) Quantification of RNA degradation of blood-specific markers to indicate the age of bloodstains. Forensic Sci Int Genet Suppl Ser 6:e453–e455CrossRef
7.
go back to reference Mohammed AT, Khalil SR et al (2018) Validation of mRNA and microRNA profiling as tools in qPCR for estimation of the age of bloodstains. Life Sci J 15(6):1–7 Mohammed AT, Khalil SR et al (2018) Validation of mRNA and microRNA profiling as tools in qPCR for estimation of the age of bloodstains. Life Sci J 15(6):1–7
8.
go back to reference Eaton GR, Eaton SS et al (2010) Quantitative EPR: a practitioners guide. Springer-Verlag Eaton GR, Eaton SS et al (2010) Quantitative EPR: a practitioners guide. Springer-Verlag
9.
go back to reference Miki T, Kai A et al (1987) Electron spin resonance of bloodstains and its application to the estimation of time after bleeding. Forensic Sci Int 35(2–3):149–158CrossRef Miki T, Kai A et al (1987) Electron spin resonance of bloodstains and its application to the estimation of time after bleeding. Forensic Sci Int 35(2–3):149–158CrossRef
10.
go back to reference Sakurai H, Tsuchiya K et al (1989) Dating of human blood by electron spin resonance spectroscopy. Naturwissenschaften 76(1):24–25CrossRef Sakurai H, Tsuchiya K et al (1989) Dating of human blood by electron spin resonance spectroscopy. Naturwissenschaften 76(1):24–25CrossRef
11.
go back to reference Andrasko J (1997) The estimation of age of bloodstains by HPLC analysis. J Forensic Sci 42(4):601–607CrossRef Andrasko J (1997) The estimation of age of bloodstains by HPLC analysis. J Forensic Sci 42(4):601–607CrossRef
12.
go back to reference Inoue H, Takabe F et al (1992) A new marker for estimation of bloodstain age by high performance liquid chromatography. Forensic Sci Int 57(1):17–27CrossRef Inoue H, Takabe F et al (1992) A new marker for estimation of bloodstain age by high performance liquid chromatography. Forensic Sci Int 57(1):17–27CrossRef
13.
go back to reference Arany S, Ohtani S (2011) Age estimation of bloodstains: a preliminary report based on aspartic acid racemization rate. Forensic Sci Int 212(1–3):e36–e39CrossRef Arany S, Ohtani S (2011) Age estimation of bloodstains: a preliminary report based on aspartic acid racemization rate. Forensic Sci Int 212(1–3):e36–e39CrossRef
14.
go back to reference Ackermann K, Ballantyne KN et al (2010) Estimating trace deposition time with circadian biomarkers: a prospective and versatile tool for crime scene reconstruction. Int J Legal Med 124(5):387–395CrossRef Ackermann K, Ballantyne KN et al (2010) Estimating trace deposition time with circadian biomarkers: a prospective and versatile tool for crime scene reconstruction. Int J Legal Med 124(5):387–395CrossRef
15.
go back to reference Lech K, Liu F et al (2016) Evaluation of mRNA markers for estimating blood deposition time: towards alibi testing from human forensic stains with rhythmic biomarkers. Forensic Sci Int Genet 21:119–125CrossRef Lech K, Liu F et al (2016) Evaluation of mRNA markers for estimating blood deposition time: towards alibi testing from human forensic stains with rhythmic biomarkers. Forensic Sci Int Genet 21:119–125CrossRef
16.
go back to reference Lech K, Liu F et al (2017) Investigation of metabolites for estimating blood deposition time. Int J Legal Med 132(1):25–32CrossRef Lech K, Liu F et al (2017) Investigation of metabolites for estimating blood deposition time. Int J Legal Med 132(1):25–32CrossRef
17.
go back to reference Doty KC, McLaughlin G et al (2016) A Raman, “spectroscopic clock” for bloodstain age determination: the first week after deposition. Anal Bioanal Chem 408(15):3993–4001CrossRef Doty KC, McLaughlin G et al (2016) A Raman, “spectroscopic clock” for bloodstain age determination: the first week after deposition. Anal Bioanal Chem 408(15):3993–4001CrossRef
18.
go back to reference Doty KC, Muro CK et al (2017) Predicting the time of the crime: bloodstain aging estimation for up to two years. Forensic Chem 5:1–7CrossRef Doty KC, Muro CK et al (2017) Predicting the time of the crime: bloodstain aging estimation for up to two years. Forensic Chem 5:1–7CrossRef
19.
go back to reference Bai P, Wang J et al (2017) Discrimination of human and nonhuman blood by Raman spectroscopy and partial least squares discriminant analysis. Anal Lett 50(2):379–388CrossRef Bai P, Wang J et al (2017) Discrimination of human and nonhuman blood by Raman spectroscopy and partial least squares discriminant analysis. Anal Lett 50(2):379–388CrossRef
20.
go back to reference Strasser S, Zink A et al (2007) Age determination of blood spots in forensic medicine by force spectroscopy. Forensic Sci Int 170(1):8–14CrossRef Strasser S, Zink A et al (2007) Age determination of blood spots in forensic medicine by force spectroscopy. Forensic Sci Int 170(1):8–14CrossRef
21.
go back to reference Smijs T, Galli F et al (2016) Forensic potential of atomic force microscopy. Forensic Chem 2:93–104CrossRef Smijs T, Galli F et al (2016) Forensic potential of atomic force microscopy. Forensic Chem 2:93–104CrossRef
22.
go back to reference Thanakiatkrai P, Yaodam A et al (2013) Age estimation of bloodstains using smartphones and digital image analysis. Forensic Sci Int 233(1–3):288–297CrossRef Thanakiatkrai P, Yaodam A et al (2013) Age estimation of bloodstains using smartphones and digital image analysis. Forensic Sci Int 233(1–3):288–297CrossRef
23.
go back to reference Shin J, Choi S et al (2017) Smart forensic phone: colorimetric analysis of a bloodstain for age estimation using a smartphone. Sens Actuators B Chem 243:221–225CrossRef Shin J, Choi S et al (2017) Smart forensic phone: colorimetric analysis of a bloodstain for age estimation using a smartphone. Sens Actuators B Chem 243:221–225CrossRef
24.
go back to reference Sun H, Dong Y et al (2017) Accurate age estimation of bloodstains based on visible reflectance spectroscopy and chemometrics methods. IEEE Photonics J 9(1):6500614 Sun H, Dong Y et al (2017) Accurate age estimation of bloodstains based on visible reflectance spectroscopy and chemometrics methods. IEEE Photonics J 9(1):6500614
25.
go back to reference Li B, Beveridge P et al (2013) The age estimation of blood stains up to 30 days old using visible wavelength hyperspectral image analysis and linear discriminant analysis. Sci Justice 53(3):270–277CrossRef Li B, Beveridge P et al (2013) The age estimation of blood stains up to 30 days old using visible wavelength hyperspectral image analysis and linear discriminant analysis. Sci Justice 53(3):270–277CrossRef
26.
go back to reference Edelman GJ, Roos M et al (2016) Practical implementation of blood stain age estimation using spectroscopy. IEEE J Sel Topics Quantum Electron 22(3):7200107CrossRef Edelman GJ, Roos M et al (2016) Practical implementation of blood stain age estimation using spectroscopy. IEEE J Sel Topics Quantum Electron 22(3):7200107CrossRef
27.
go back to reference Edelman G, van Leeuwen TG et al (2012) Hyperspectral imaging for the age estimation of blood stains at the crime scene. Forensic Sci Int 223(1–3):72–77CrossRef Edelman G, van Leeuwen TG et al (2012) Hyperspectral imaging for the age estimation of blood stains at the crime scene. Forensic Sci Int 223(1–3):72–77CrossRef
28.
go back to reference Edelman G, Manti V et al (2012) Identification and age estimation of blood stains on colored backgrounds by near infrared spectroscopy. Forensic Sci Int 220(1–3):239–244CrossRef Edelman G, Manti V et al (2012) Identification and age estimation of blood stains on colored backgrounds by near infrared spectroscopy. Forensic Sci Int 220(1–3):239–244CrossRef
29.
go back to reference Pereira JFQ, Silva CS et al (2017) Evaluation and identification of blood stains with handheld NIR spectrometer. Microchem J 133:561–566CrossRef Pereira JFQ, Silva CS et al (2017) Evaluation and identification of blood stains with handheld NIR spectrometer. Microchem J 133:561–566CrossRef
30.
go back to reference Morillas AV, Gooch J et al (2018) Feasibility of a handheld near infrared device for the qualitative analysis of bloodstains. Talanta 184:1–6CrossRef Morillas AV, Gooch J et al (2018) Feasibility of a handheld near infrared device for the qualitative analysis of bloodstains. Talanta 184:1–6CrossRef
Metadata
Title
Investigating the Age of Blood Traces: How Close Are We to Finding the Holy Grail of Forensic Science?
Authors
Maurice Aalders
Leah Wilk
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-20542-3_7

Premium Partners