Skip to main content
Top
Published in: Meccanica 9/2017

08-10-2016

Investigating the planar circular restricted three-body problem with strong gravitational field

Author: Euaggelos E. Zotos

Published in: Meccanica | Issue 9/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The case of the planar circular restricted three-body problem where one of the two primaries has a stronger gravitational field with respect to the classical Newtonian field is investigated. We consider the case where two primaries have the same mass, so as the the only difference between them to be the strength of the gravitational field which is controlled by the power p of the potential. A thorough numerical analysis takes place in several types of two dimensional planes in which we classify initial conditions of orbits into three main categories: (1) bounded, (2) escaping and (3) collision. Our results reveal that the power of the gravitational potential has a huge impact on the nature of orbits. Interpreting the collision motion as leaking in the phase space we related our results to both chaotic scattering and the theory of leaking Hamiltonian systems. We successfully located the escape as well as the collision basins and we managed to correlate them with the corresponding escape and collision time of the orbits. We hope our contribution to be useful for a further understanding of the escape and collision properties of motion in this interesting version of the restricted three-body problem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
In the “Appendix” we shall demonstrate that Keplerian circular orbits are also possible in the case where we have gravity stronger than the classical Newtonian one.
 
2
The most safe and efficient way to determine if an orbit escapes or not is the value of the total orbital energy of the particle measured by an observer in the inertial frame of reference. In particular, if the total orbital energy in the inertial frame is negative, the test particle might return back to the scattering region. On the contrary, if the total orbital energy becomes positive the test particle escapes, beyond any doubt, and it will never come back [6]. Our previous numerical experience (e.g., [5355]) strongly suggests that the total orbital energy of the test-particle in the inertial frame becomes positive much sooner than it takes for the massless particle to cross the disk with radius \(R_d = 10\). Thus we may claim that our escape criterion used in the previous series of papers, and also in the present one, is both correct and safe. In the following Section we will present numerical evidence proving the validity of our escape criterion.
 
3
We choose the \({\dot{\phi }} < 0\) instead of the \({\dot{\phi }} > 0\) part simply because in [53] we seen that it contains more interesting orbital content.
 
4
When we state that an area is fractal we simply mean that it has a fractal-like geometry without conducting any specific calculations as in [2].
 
5
An infinite number of regions of (stable) quasi-periodic (or small scale chaotic) motion is expected from classical chaos theory.
 
Literature
1.
go back to reference Aguirre J, Vallego JC, Sanjuán MAF (2001) Wada basins and chaotic invariant sets in the Hénon–Heiles system. Phys Rev E 64:066208-1–066208-11ADSCrossRef Aguirre J, Vallego JC, Sanjuán MAF (2001) Wada basins and chaotic invariant sets in the Hénon–Heiles system. Phys Rev E 64:066208-1–066208-11ADSCrossRef
2.
go back to reference Aguirre J, Viana RL, Sanjuán MAF (2009) Fractal structures in nonlinear dynamics. Rev Mod Phys 81:333–386ADSCrossRef Aguirre J, Viana RL, Sanjuán MAF (2009) Fractal structures in nonlinear dynamics. Rev Mod Phys 81:333–386ADSCrossRef
3.
go back to reference Barrio R, Blesa F, Serrano S (2006) Is there chaos in Copenhagen problem? Monografías de la Real Academia de Ciencias de Zaragoza 30:43–50MathSciNetMATH Barrio R, Blesa F, Serrano S (2006) Is there chaos in Copenhagen problem? Monografías de la Real Academia de Ciencias de Zaragoza 30:43–50MathSciNetMATH
4.
go back to reference Barrio R, Blesa F, Serrano S (2008) Fractal structures in the Hénon–Heiles Hamiltonian. Europhys Lett 82:10003CrossRef Barrio R, Blesa F, Serrano S (2008) Fractal structures in the Hénon–Heiles Hamiltonian. Europhys Lett 82:10003CrossRef
5.
go back to reference Barrio R, Blesa F, Serrano S (2009) Bifurcations and safe regions in open Hamiltonians. New J Phys 11:053004-1–053004-12CrossRef Barrio R, Blesa F, Serrano S (2009) Bifurcations and safe regions in open Hamiltonians. New J Phys 11:053004-1–053004-12CrossRef
6.
go back to reference Benet L, Trautman D, Seligman T (1996) Chaotic scattering in the restricted three-body problem. I. The Copenhagen problem. Celest Mech Dyn Astron 66:203–228ADSMathSciNetCrossRefMATH Benet L, Trautman D, Seligman T (1996) Chaotic scattering in the restricted three-body problem. I. The Copenhagen problem. Celest Mech Dyn Astron 66:203–228ADSMathSciNetCrossRefMATH
7.
go back to reference Benet L, Seligman T, Trautman D (1998) Chaotic scattering in the restricted three-body problem II. Small mass parameters. Celest Mech Dyn Astron 71:167–189ADSMathSciNetCrossRefMATH Benet L, Seligman T, Trautman D (1998) Chaotic scattering in the restricted three-body problem II. Small mass parameters. Celest Mech Dyn Astron 71:167–189ADSMathSciNetCrossRefMATH
8.
9.
go back to reference Bleher S, Ott E, Grebogi C (1989) Routes to chaotic scattering. Phys Rev Lett 63:919–922ADSCrossRef Bleher S, Ott E, Grebogi C (1989) Routes to chaotic scattering. Phys Rev Lett 63:919–922ADSCrossRef
11.
go back to reference Broucke RA (1968) Periodic orbits in the restricted three-body problem with Earth–Moon masses. Technical Report 32-1168, Jet Propulsion Laboratory, California Institute of Technology Broucke RA (1968) Periodic orbits in the restricted three-body problem with Earth–Moon masses. Technical Report 32-1168, Jet Propulsion Laboratory, California Institute of Technology
13.
go back to reference Contopoulos G (1990) Asymptotic curves and escapes in Hamiltonian systems. Astron Astrophys 231:41–55ADSMathSciNet Contopoulos G (1990) Asymptotic curves and escapes in Hamiltonian systems. Astron Astrophys 231:41–55ADSMathSciNet
15.
go back to reference Contopoulos G, Kaufmann D (1992) Types of escapes in a simple Hamiltonian system. Astron Astrophys 253:379–388ADSMathSciNetMATH Contopoulos G, Kaufmann D (1992) Types of escapes in a simple Hamiltonian system. Astron Astrophys 253:379–388ADSMathSciNetMATH
16.
go back to reference Contopoulos G, Kandrup HE, Kaufmann D (1993) Fractal properties of escape from a two-dimensional potential. Phys D 64:310–323CrossRefMATH Contopoulos G, Kandrup HE, Kaufmann D (1993) Fractal properties of escape from a two-dimensional potential. Phys D 64:310–323CrossRefMATH
18.
19.
go back to reference de Assis SC, Terra MO (2014) Escape dynamics and fractal basin boundaries in the planar Earth–Moon system. Celest Mech Dyn Astron 120:105–130ADSMathSciNetCrossRef de Assis SC, Terra MO (2014) Escape dynamics and fractal basin boundaries in the planar Earth–Moon system. Celest Mech Dyn Astron 120:105–130ADSMathSciNetCrossRef
21.
go back to reference Hénon M (1969) Numerical exploration of the restricted problem. V. Astron Astrophys 1:223–238ADSMATH Hénon M (1969) Numerical exploration of the restricted problem. V. Astron Astrophys 1:223–238ADSMATH
23.
24.
go back to reference Kandrup HE, Siopis C, Contopoulos G, Dvorak R (1999) Diffusion and scaling in escapes from two-degrees-of-freedom Hamiltonian systems. Chaos 9:381–392ADSMathSciNetCrossRefMATH Kandrup HE, Siopis C, Contopoulos G, Dvorak R (1999) Diffusion and scaling in escapes from two-degrees-of-freedom Hamiltonian systems. Chaos 9:381–392ADSMathSciNetCrossRefMATH
27.
go back to reference Milgrom M (1983) A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys J 270:365370 Milgrom M (1983) A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys J 270:365370
28.
go back to reference Motter AE, Lai YC (2002) Dissipative chaotic scattering. Phys Rev E 65:R0152051-1–R0152051-4 Motter AE, Lai YC (2002) Dissipative chaotic scattering. Phys Rev E 65:R0152051-1–R0152051-4
31.
go back to reference Navarro JF, Henrard J (2001) Spiral windows for escaping stars. Astron Astrophys 369:1112–1121ADSCrossRef Navarro JF, Henrard J (2001) Spiral windows for escaping stars. Astron Astrophys 369:1112–1121ADSCrossRef
32.
35.
go back to reference Press HP, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN 77, 2nd edn. Cambridge University Press, CambridgeMATH Press HP, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN 77, 2nd edn. Cambridge University Press, CambridgeMATH
38.
go back to reference Schneider J, Tél T (2003) Extracting flow structures from tracer data. Ocean Dyn 53:64–72ADSCrossRef Schneider J, Tél T (2003) Extracting flow structures from tracer data. Ocean Dyn 53:64–72ADSCrossRef
40.
go back to reference Seoane JM, Sanjuán MAF, Lai YC (2007) Fractal dimension in dissipative chaotic scattering. Phys Rev E 76:016208-1–016208-6ADSCrossRef Seoane JM, Sanjuán MAF, Lai YC (2007) Fractal dimension in dissipative chaotic scattering. Phys Rev E 76:016208-1–016208-6ADSCrossRef
41.
go back to reference Seoane JM, Sanjuán MAF (2008) Exponential decay and scaling laws in noisy chaotic scattering. Phys Lett A 372:110–116ADSCrossRefMATH Seoane JM, Sanjuán MAF (2008) Exponential decay and scaling laws in noisy chaotic scattering. Phys Lett A 372:110–116ADSCrossRefMATH
42.
go back to reference Seoane JM, Huang L, Sanjuán MAF, Lai YC (2009) Effects of noise on chaotic scattering. Phys Rev E 79:047202-1–047202-4ADSCrossRef Seoane JM, Huang L, Sanjuán MAF, Lai YC (2009) Effects of noise on chaotic scattering. Phys Rev E 79:047202-1–047202-4ADSCrossRef
43.
go back to reference Seoane JM, Sanjuán MAF (2010) Escaping dynamics in the presence of dissipation and noisy in scattering systems. Int J Bifurc Chaos 9:2783–2793CrossRefMATH Seoane JM, Sanjuán MAF (2010) Escaping dynamics in the presence of dissipation and noisy in scattering systems. Int J Bifurc Chaos 9:2783–2793CrossRefMATH
44.
go back to reference Simó C, Stuchi T (2000) Central stable/unstable manifolds and the destruction of KAM tori in the planar Hill problem. Phys D 140:1–32MathSciNetCrossRefMATH Simó C, Stuchi T (2000) Central stable/unstable manifolds and the destruction of KAM tori in the planar Hill problem. Phys D 140:1–32MathSciNetCrossRefMATH
45.
go back to reference Siopis CV, Contopoulos G, Kandrup HE (1995) Escape probabilities in a Hamiltonian with two channels of escape. N Y Acad Sci Ann 751:205–212ADSCrossRefMATH Siopis CV, Contopoulos G, Kandrup HE (1995) Escape probabilities in a Hamiltonian with two channels of escape. N Y Acad Sci Ann 751:205–212ADSCrossRefMATH
46.
go back to reference Siopis CV, Kandrup HE, Contopoulos G, Dvorak R (1995) Universal properties of escape. N Y Acad Sci Ann 773:221–230ADSCrossRefMATH Siopis CV, Kandrup HE, Contopoulos G, Dvorak R (1995) Universal properties of escape. N Y Acad Sci Ann 773:221–230ADSCrossRefMATH
47.
48.
go back to reference Szebehely V (1967) Theory of orbits. Academic Press, New York Szebehely V (1967) Theory of orbits. Academic Press, New York
49.
go back to reference Tuval I, Schneider J, Piro O, Tél T (2004) Opening up fractal structures of three-dimensional flows via leaking. Europhys Lett 65:633–639ADSCrossRef Tuval I, Schneider J, Piro O, Tél T (2004) Opening up fractal structures of three-dimensional flows via leaking. Europhys Lett 65:633–639ADSCrossRef
50.
go back to reference Wolfram S (2003) The mathematica book. Wolfram Media, ChampaignMATH Wolfram S (2003) The mathematica book. Wolfram Media, ChampaignMATH
51.
go back to reference Zotos EE (2014) A Hamiltonian system of three degrees of freedom with eight channels of escape: the great escape. Nonlinear Dyn 76:1301–1326CrossRef Zotos EE (2014) A Hamiltonian system of three degrees of freedom with eight channels of escape: the great escape. Nonlinear Dyn 76:1301–1326CrossRef
52.
54.
go back to reference Zotos EE (2015) How does the oblateness coefficient influence the nature of orbits in the restricted three-body problem? Astrophys Space Sci 358:10ADSCrossRef Zotos EE (2015) How does the oblateness coefficient influence the nature of orbits in the restricted three-body problem? Astrophys Space Sci 358:10ADSCrossRef
55.
go back to reference Zotos EE (2015) Unveiling the influence of the radiation pressure in nature of orbits in the photogravitational restricted three-body problem. Astrophys Space Sci 360:1ADSMathSciNetCrossRef Zotos EE (2015) Unveiling the influence of the radiation pressure in nature of orbits in the photogravitational restricted three-body problem. Astrophys Space Sci 360:1ADSMathSciNetCrossRef
56.
57.
go back to reference Zotos EE (2015) Orbital dynamics in the planar Saturn–Titan system. Astrophys Space Sci 358:4ADSCrossRef Zotos EE (2015) Orbital dynamics in the planar Saturn–Titan system. Astrophys Space Sci 358:4ADSCrossRef
58.
go back to reference Zotos EE (2015) Orbit classification in the planar circular Pluto–Charon system. Astrophys Space Sci 360:7ADSCrossRef Zotos EE (2015) Orbit classification in the planar circular Pluto–Charon system. Astrophys Space Sci 360:7ADSCrossRef
60.
go back to reference Zotos EE (2016) Escape dynamics and fractal basins boundaries in the three-dimensional Earth–Moon system. Astrophys Space Sci 361:94ADSCrossRef Zotos EE (2016) Escape dynamics and fractal basins boundaries in the three-dimensional Earth–Moon system. Astrophys Space Sci 361:94ADSCrossRef
Metadata
Title
Investigating the planar circular restricted three-body problem with strong gravitational field
Author
Euaggelos E. Zotos
Publication date
08-10-2016
Publisher
Springer Netherlands
Published in
Meccanica / Issue 9/2017
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-016-0548-2

Other articles of this Issue 9/2017

Meccanica 9/2017 Go to the issue

Premium Partners