Skip to main content
Top
Published in: Journal of Electronic Materials 5/2024

14-03-2024 | Original Research Article

Investigation of Double RESURF P-GaN Gate AlGaN/GaN Heterostructure Field-Effect Transistors with Partial N-GaN Channels

Authors: Huan Li, Zhiyuan Bai, Lian Yang

Published in: Journal of Electronic Materials | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a double REduced SURface Field (RESURF) P-GaN gate AlGaN/GaN heterostructure field-effect transistor with a partial N-GaN channel (DR-HFET) is proposed to improve the on-state performance in the high-voltage P-GaN gate AlGaN/GaN heterostructure field-effect transistor (PG-HFET). The partial N-GaN channel between the gate and the drain increases the carrier density in the channel layer, and markedly reduces the on-resistance (Ron). The P-top layer and the P-buffer layer modulate the distribution of the electric field along the GaN channel to achieve a high breakdown voltage. After validation of the simulation models and parameters, the DR-HFETs are optimized using the charge balance principle. The optimum DR-HFET with a gate-to-drain distance of Lgd = 6 μm shows a BV of 1100 V and Ron of 5.5 Ω mm, which is 50.9% of the Ron in PG-HFET. The highest Baliga figure of merit (BFOM) of 2.3 GW/cm2 is obtained when the channel charge density Qch is 3.2 × 1013 cm−2 and the ratio of the P-top charge density Qpt to the buffer charge density Qbuf is 1.625. We also examine the influence of the AlGaN/GaN quality on the performance of the DR-HFETs. The simulation results indicate that the double RESURF structure may be less effective in the high-quality AlGaN/GaN epitaxial layer. Overall, the DR-HFET shows a good balance between off-state blocking capability and on-state performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A.I. Emon, M. Hassan, A.B. Mirza, J. Kaplun, S.S. Vala, and F. Luo, A review of high-speed GaN power modules: state of the art, challenges, and solutions. IEEE J. Emerg. Sel. Top. Power Electron. 11, 2707 (2023).CrossRef A.I. Emon, M. Hassan, A.B. Mirza, J. Kaplun, S.S. Vala, and F. Luo, A review of high-speed GaN power modules: state of the art, challenges, and solutions. IEEE J. Emerg. Sel. Top. Power Electron. 11, 2707 (2023).CrossRef
2.
go back to reference Y. Zhang, F. Udrea, and H. Wang, Multidimensional device architectures for efficient power electronics. Nat. Electron. 5, 723 (2022).CrossRef Y. Zhang, F. Udrea, and H. Wang, Multidimensional device architectures for efficient power electronics. Nat. Electron. 5, 723 (2022).CrossRef
3.
go back to reference B.N. Pushpakaran, A.S. Subburaj, and S.B. Bayne, Commercial GaN-based power electronic systems: a review. J. Electron. Mater. 49, 6247 (2020).CrossRef B.N. Pushpakaran, A.S. Subburaj, and S.B. Bayne, Commercial GaN-based power electronic systems: a review. J. Electron. Mater. 49, 6247 (2020).CrossRef
4.
go back to reference C. Bryan, P. Faucherand, M. Charles, M. Plissonnier, and G. Savelli, Thermoelectric properties of n-type GaN and 2D electron gas in AlGaN-GaN heterostructure. J. Electron. Mater. 50, 1301 (2021).CrossRef C. Bryan, P. Faucherand, M. Charles, M. Plissonnier, and G. Savelli, Thermoelectric properties of n-type GaN and 2D electron gas in AlGaN-GaN heterostructure. J. Electron. Mater. 50, 1301 (2021).CrossRef
5.
go back to reference J. Ajayan, D. Nirmal, P. Mohankumar, B. Mounika, S. Bhattacharya, S. Tayal, and A.S.A. Fletcher, Challenges in material processing and reliability issues in AlGaN/GaN HEMTs on silicon wafers for future RF power electronics & switching applications: a critical review. Mater. Sci. Semicond. Process. 151, 106982 (2022).CrossRef J. Ajayan, D. Nirmal, P. Mohankumar, B. Mounika, S. Bhattacharya, S. Tayal, and A.S.A. Fletcher, Challenges in material processing and reliability issues in AlGaN/GaN HEMTs on silicon wafers for future RF power electronics & switching applications: a critical review. Mater. Sci. Semicond. Process. 151, 106982 (2022).CrossRef
6.
go back to reference A. Udabe, I. Baraia-Etxaburu, and D.G. Diez, Gallium nitride power devices: a state of the art review. IEEE Access 11, 48628 (2023).CrossRef A. Udabe, I. Baraia-Etxaburu, and D.G. Diez, Gallium nitride power devices: a state of the art review. IEEE Access 11, 48628 (2023).CrossRef
7.
go back to reference Y.-C. Lai, Y.-N. Zhong, M.-Y. Tsai, and Y.-M. Hsin, Gate capacitance and off-state characteristics of E-mode p-GaN gate AlGaN/GaN high-electron-mobility transistors after gate stress bias. J. Electron. Mater. 50, 1162 (2021).CrossRef Y.-C. Lai, Y.-N. Zhong, M.-Y. Tsai, and Y.-M. Hsin, Gate capacitance and off-state characteristics of E-mode p-GaN gate AlGaN/GaN high-electron-mobility transistors after gate stress bias. J. Electron. Mater. 50, 1162 (2021).CrossRef
8.
go back to reference N. Kim, J. Yu, W. Zhang, R. Li, M. Wang, and W.T. Ng, Current trends in the development of normally-OFF GaN-on-Si power transistors and power modules: a review. J. Electron. Mater. 49, 6829 (2020).CrossRef N. Kim, J. Yu, W. Zhang, R. Li, M. Wang, and W.T. Ng, Current trends in the development of normally-OFF GaN-on-Si power transistors and power modules: a review. J. Electron. Mater. 49, 6829 (2020).CrossRef
9.
go back to reference E.A. Jones, F.F. Wang, and D. Costinett, Review of commercial GaN power devices and GaN-based converter design challenges. IEEE J. Emerg. Sel. Top. Power Electron. 4, 707 (2016).CrossRef E.A. Jones, F.F. Wang, and D. Costinett, Review of commercial GaN power devices and GaN-based converter design challenges. IEEE J. Emerg. Sel. Top. Power Electron. 4, 707 (2016).CrossRef
10.
go back to reference Y. Zhang, C. Yao, X. Zhang, H. Chen, H. Li, and J. Wang, Power loss model for GaN-based MHz critical conduction mode power factor correction circuits. IEEE J. Emerg. Sel. Top. Power Electron. 8, 141 (2020).CrossRef Y. Zhang, C. Yao, X. Zhang, H. Chen, H. Li, and J. Wang, Power loss model for GaN-based MHz critical conduction mode power factor correction circuits. IEEE J. Emerg. Sel. Top. Power Electron. 8, 141 (2020).CrossRef
11.
go back to reference K. Kumar and R.K. Behera, Loss assessment of a 3.3 kW integrated charger for electric vehicles using GaN semiconductor devices, in IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (Cochin, India), 2020 (2020), p. 19535095. K. Kumar and R.K. Behera, Loss assessment of a 3.3 kW integrated charger for electric vehicles using GaN semiconductor devices, in IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (Cochin, India), 2020 (2020), p. 19535095.
13.
go back to reference Z. Bai, J. Du, H. Wang, X. Li, and Q. Yu, Simulation design of high Baliga’s figure of merit normally-off P-GaN gate AlGaN/GaN heterostructure field effect transistors with junction field plates. Superlattice Microstruct. 123, 257 (2018).CrossRef Z. Bai, J. Du, H. Wang, X. Li, and Q. Yu, Simulation design of high Baliga’s figure of merit normally-off P-GaN gate AlGaN/GaN heterostructure field effect transistors with junction field plates. Superlattice Microstruct. 123, 257 (2018).CrossRef
14.
go back to reference H. Jiang, Q. Lyu, R. Zhu, P. Xiang, K. Cheng, and K.M. Lau, 1300 V normally-OFF p-GaN gate HEMTs on Si with high ON-state drain current. IEEE Trans. Electron Devices 68, 653 (2021).CrossRef H. Jiang, Q. Lyu, R. Zhu, P. Xiang, K. Cheng, and K.M. Lau, 1300 V normally-OFF p-GaN gate HEMTs on Si with high ON-state drain current. IEEE Trans. Electron Devices 68, 653 (2021).CrossRef
15.
go back to reference H. Jiang, R. Zhu, Q. Lyu, and K.M. Lau, High-voltage p-GaN HEMTs with off-state blocking capability after gate breakdown. IEEE Electron Device Lett. 40, 530 (2019).CrossRef H. Jiang, R. Zhu, Q. Lyu, and K.M. Lau, High-voltage p-GaN HEMTs with off-state blocking capability after gate breakdown. IEEE Electron Device Lett. 40, 530 (2019).CrossRef
16.
go back to reference Z. Bai, S. Chai, C. Zhao, and L. Wang, Design of high Baliga’s figure-of-merit P-GaN gate AlGaN/GaN heterostructure field-effect transistors with P-AlGaN field plates. J. Electron. Mater. 52, 3892 (2023).CrossRef Z. Bai, S. Chai, C. Zhao, and L. Wang, Design of high Baliga’s figure-of-merit P-GaN gate AlGaN/GaN heterostructure field-effect transistors with P-AlGaN field plates. J. Electron. Mater. 52, 3892 (2023).CrossRef
17.
go back to reference X. Wei, X. Zhang, C. Sun, W. Tang, C. Zeng, F. Chen, T. He, G. Yu, L. Song, W. Lin, X. Zhang, D. Zhao, W. Huang, Y. Cai, and B. Zhang, Improvement of breakdown voltage and ON-resistance in normally-off AlGaN/GaN HEMTs using etching-free p-GaN stripe array gate. IEEE Trans. Electron Devices 68, 5041 (2021).CrossRef X. Wei, X. Zhang, C. Sun, W. Tang, C. Zeng, F. Chen, T. He, G. Yu, L. Song, W. Lin, X. Zhang, D. Zhao, W. Huang, Y. Cai, and B. Zhang, Improvement of breakdown voltage and ON-resistance in normally-off AlGaN/GaN HEMTs using etching-free p-GaN stripe array gate. IEEE Trans. Electron Devices 68, 5041 (2021).CrossRef
18.
go back to reference R. Sun, P. Luo, F. Wang, C. Liu, W. Xu, Y. Wang, G. Ding, H. Yang, Q. Feng, W. Chen, and B. Zhang, Reverse blocking p-GaN gate HEMTs with multicolumn p-GaN/Schottky alternate-island drain. IEEE Electron Device Lett. 43, 850 (2022).CrossRef R. Sun, P. Luo, F. Wang, C. Liu, W. Xu, Y. Wang, G. Ding, H. Yang, Q. Feng, W. Chen, and B. Zhang, Reverse blocking p-GaN gate HEMTs with multicolumn p-GaN/Schottky alternate-island drain. IEEE Electron Device Lett. 43, 850 (2022).CrossRef
19.
go back to reference X. Zhou, L. Geng, Y. Li, X. Fang, Z. Wang, S. Zhu, J. Wu, M. Qiao, and B. Zhang, Investigation on total-ionizing-dose radiation response for 700 V double-RESURF SOI LDMOS. IEEE Trans. Nucl. Sci. 69, 1134 (2022).CrossRef X. Zhou, L. Geng, Y. Li, X. Fang, Z. Wang, S. Zhu, J. Wu, M. Qiao, and B. Zhang, Investigation on total-ionizing-dose radiation response for 700 V double-RESURF SOI LDMOS. IEEE Trans. Nucl. Sci. 69, 1134 (2022).CrossRef
20.
go back to reference M. Imam, Z. Hossain, M. Quddus, J. Adams, C. Hoggatt, T. Ishiguro, and R. Nair, Design and optimization of double-RESURF high-voltage lateral devices for a manufacturable process. IEEE Trans. Electron Devices 50, 1697 (2003).CrossRef M. Imam, Z. Hossain, M. Quddus, J. Adams, C. Hoggatt, T. Ishiguro, and R. Nair, Design and optimization of double-RESURF high-voltage lateral devices for a manufacturable process. IEEE Trans. Electron Devices 50, 1697 (2003).CrossRef
21.
go back to reference X. Li, M.V. Hove, M. Zhao, K. Geens, V. Lempinen, J. Sormunen, G. Groeseneken, and S. Decoutere, 200 V enhancement-mode p-GaN HEMTs fabricated on 200 mm GaN-on-SOI with trench isolation for monolithic integration. IEEE Electron Device Lett. 38, 918 (2017).CrossRef X. Li, M.V. Hove, M. Zhao, K. Geens, V. Lempinen, J. Sormunen, G. Groeseneken, and S. Decoutere, 200 V enhancement-mode p-GaN HEMTs fabricated on 200 mm GaN-on-SOI with trench isolation for monolithic integration. IEEE Electron Device Lett. 38, 918 (2017).CrossRef
22.
go back to reference ATLAS User’s Manual (Silvaco Int. Santa Clara, 2018), pp. 541–557. ATLAS User’s Manual (Silvaco Int. Santa Clara, 2018), pp. 541–557.
23.
go back to reference Y. Liu, Q. Yu, and J. Du, Simulation design of a high-breakdown-voltage p-GaN-gate GaN HEMT with a hybrid AlGaN buffer layer for power electronics applications. J. Comput. Electron. 19, 1527 (2020).CrossRef Y. Liu, Q. Yu, and J. Du, Simulation design of a high-breakdown-voltage p-GaN-gate GaN HEMT with a hybrid AlGaN buffer layer for power electronics applications. J. Comput. Electron. 19, 1527 (2020).CrossRef
24.
go back to reference S. Gustafsson, J.T. Chen, J. Bergsten, U. Forsberg, M. Thorsell, E. Janzén, and N. Rorsman, Dispersive effects in microwave AlGaN/AlN/GaN HEMTs with carbon doped buffer. IEEE Trans. Electron. Dev. 62, 2162 (2015).CrossRef S. Gustafsson, J.T. Chen, J. Bergsten, U. Forsberg, M. Thorsell, E. Janzén, and N. Rorsman, Dispersive effects in microwave AlGaN/AlN/GaN HEMTs with carbon doped buffer. IEEE Trans. Electron. Dev. 62, 2162 (2015).CrossRef
25.
go back to reference Z. Bai, J. Du, Q. Xin, R. Li, and Q. Yu, Numerical analysis of the reverse blocking enhancement in High-K passivation AlGaN/GaN Schottky barrier diodes with gated edge termination. Superlattices Microstruct. 114, 143 (2018).CrossRef Z. Bai, J. Du, Q. Xin, R. Li, and Q. Yu, Numerical analysis of the reverse blocking enhancement in High-K passivation AlGaN/GaN Schottky barrier diodes with gated edge termination. Superlattices Microstruct. 114, 143 (2018).CrossRef
26.
go back to reference C. Bulutay, Electron initiated impact ionization in AlGaN alloys. Semicond. Sci. Technol. 17, L59 (2002).CrossRef C. Bulutay, Electron initiated impact ionization in AlGaN alloys. Semicond. Sci. Technol. 17, L59 (2002).CrossRef
27.
go back to reference J. Du, H. Yan, C. Yin, Z. Feng, S. Dun, and Q. Yu, Simulation and characterization of millimeter-wave InAlN/GaN high electron mobility transistors using Lombardi mobility model. J. Appl. Phys. 115, 164510 (2014).CrossRef J. Du, H. Yan, C. Yin, Z. Feng, S. Dun, and Q. Yu, Simulation and characterization of millimeter-wave InAlN/GaN high electron mobility transistors using Lombardi mobility model. J. Appl. Phys. 115, 164510 (2014).CrossRef
28.
go back to reference I. Hwang, H. Choi, J.W. Lee, H. S. Choi, J. Kim, J. Ha, C.-Y. Um, S.-K. Hwang, J. Oh, J.-Y. Kim, J. K. Shin, Y. Park, U. Chung, I.-K. Yoo, and K. Kim, 1.6kV, 2.9 mΩcm2 normally-off p-GaN HEMT device, in Proceedings of International Symposium on Power Semiconductor (2012), pp. 44–41. I. Hwang, H. Choi, J.W. Lee, H. S. Choi, J. Kim, J. Ha, C.-Y. Um, S.-K. Hwang, J. Oh, J.-Y. Kim, J. K. Shin, Y. Park, U. Chung, I.-K. Yoo, and K. Kim, 1.6kV, 2.9 mΩcm2 normally-off p-GaN HEMT device, in Proceedings of International Symposium on Power Semiconductor (2012), pp. 44–41.
29.
go back to reference A. Perez-Tomas, M. Placidi, X. Perpina, A. Constant, P. Godignon, X. Jordà, P. Brosselard, and J. Millán, GaN metal-oxide-semiconductor field-effect transistor inversion channel mobility modeling. J. Appl. Phys. 105, 114510 (2009).CrossRef A. Perez-Tomas, M. Placidi, X. Perpina, A. Constant, P. Godignon, X. Jordà, P. Brosselard, and J. Millán, GaN metal-oxide-semiconductor field-effect transistor inversion channel mobility modeling. J. Appl. Phys. 105, 114510 (2009).CrossRef
30.
go back to reference C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11, 1164 (1988).CrossRef C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11, 1164 (1988).CrossRef
31.
go back to reference H. Handa, S. Ujita, D. Shibata, R. Kajitani, N. Shiozaki, M. Ogawa, H. Umeda, K. Tanaka, S. Tamura, T. Hatsuda, M. Ishida, and T. Ueda, High-speed switching and current-collapse-free operation by GaN gate injection transistors with thick GaN buffer on bulk GaN substrates, in IEEE International Electron Devices Meeting (IEDM) (2016), pp. 10.3.1–10.3.4. H. Handa, S. Ujita, D. Shibata, R. Kajitani, N. Shiozaki, M. Ogawa, H. Umeda, K. Tanaka, S. Tamura, T. Hatsuda, M. Ishida, and T. Ueda, High-speed switching and current-collapse-free operation by GaN gate injection transistors with thick GaN buffer on bulk GaN substrates, in IEEE International Electron Devices Meeting (IEDM) (2016), pp. 10.3.1–10.3.4.
32.
go back to reference R. Hao, W. Li, K. Fu, G. Yu, L. Song, J. Yuan, J. Li, X. Deng, X. Zhang, Q. Zhou, Y. Fan, W. Shi, Y. Cai, X. Zhang, and B. Zhang, Breakdown enhancement and current collapse suppression by high-resistivity GaN cap layer in normally-off AlGaN/GaN HEMTs. IEEE Electron Device Lett. 38, 1567 (2017).CrossRef R. Hao, W. Li, K. Fu, G. Yu, L. Song, J. Yuan, J. Li, X. Deng, X. Zhang, Q. Zhou, Y. Fan, W. Shi, Y. Cai, X. Zhang, and B. Zhang, Breakdown enhancement and current collapse suppression by high-resistivity GaN cap layer in normally-off AlGaN/GaN HEMTs. IEEE Electron Device Lett. 38, 1567 (2017).CrossRef
33.
go back to reference F. Zhou, W. Xu, F. Ren, Y. Xia, L. Wu, T. Zhu, D. Chen, R. Zhang, Y. Zheng, and H. Lu, 1.2 kV/25 a normally off P-N junction/AlGaN/GaN HEMTs with nanosecond switching characteristics and robust overvoltage capability. IEEE Trans. Power Electron. 37, 26 (2022).CrossRef F. Zhou, W. Xu, F. Ren, Y. Xia, L. Wu, T. Zhu, D. Chen, R. Zhang, Y. Zheng, and H. Lu, 1.2 kV/25 a normally off P-N junction/AlGaN/GaN HEMTs with nanosecond switching characteristics and robust overvoltage capability. IEEE Trans. Power Electron. 37, 26 (2022).CrossRef
34.
go back to reference J. Cui, Y. Wu, J. Yang, J. Yu, T. Li, X. Yang, B. Shen, M. Wang, and J. Wei, Method to study dynamic depletion behaviors in High-Voltage (BV=1.4 kV) p-GaN Gate HEMT on Sapphire Substrate, in International Symposium on Power Semiconductor Devices & ICs, (Hong Kong, China), 2023 (2023), p. 127. J. Cui, Y. Wu, J. Yang, J. Yu, T. Li, X. Yang, B. Shen, M. Wang, and J. Wei, Method to study dynamic depletion behaviors in High-Voltage (BV=1.4 kV) p-GaN Gate HEMT on Sapphire Substrate, in International Symposium on Power Semiconductor Devices & ICs, (Hong Kong, China), 2023 (2023), p. 127.
35.
go back to reference C. Yu, F. Wang, J. He, Y. Zhang, R. Sun, W. Xu, G. Ding, Q. Feng, X. Wang, Y. Wang, M. He, W. Chen, H. Jia, and H. Chen, High voltage normally-off p-GaN gate HEMT with the compatible high threshold and drain current. ECS J. Solid State Sci. Technol. 11, 085009 (2022).CrossRef C. Yu, F. Wang, J. He, Y. Zhang, R. Sun, W. Xu, G. Ding, Q. Feng, X. Wang, Y. Wang, M. He, W. Chen, H. Jia, and H. Chen, High voltage normally-off p-GaN gate HEMT with the compatible high threshold and drain current. ECS J. Solid State Sci. Technol. 11, 085009 (2022).CrossRef
36.
go back to reference S. Kotzea, W. Witte, B.-J. Godejohann, M. Marx, M. Heuken, H. Kalisch, R. Aidam, and A. Vescan, Comparison of MOCVD and MBE regrowth for CAVET fabrication. Electronics 8, 377 (2019).CrossRef S. Kotzea, W. Witte, B.-J. Godejohann, M. Marx, M. Heuken, H. Kalisch, R. Aidam, and A. Vescan, Comparison of MOCVD and MBE regrowth for CAVET fabrication. Electronics 8, 377 (2019).CrossRef
37.
go back to reference W. Zhang, J. Zhang, M. Xiao, L. Zhang, and Y. Hao, Al0.3Ga0.7N/GaN (10 nm)/Al0.1Ga0.9N HEMTs with low leakage current and high three-terminal breakdown voltage. IEEE Electron Device Lett. 39, 1370 (2018).CrossRef W. Zhang, J. Zhang, M. Xiao, L. Zhang, and Y. Hao, Al0.3Ga0.7N/GaN (10 nm)/Al0.1Ga0.9N HEMTs with low leakage current and high three-terminal breakdown voltage. IEEE Electron Device Lett. 39, 1370 (2018).CrossRef
38.
go back to reference N. Remesh, N. Mohan, S. Raghavan, R. Muralidharan, and D.N. Nath, Optimum carbon concentration in GaN-on-silicon for breakdown enhancement in AlGaN/GaN HEMTs. IEEE Trans. Electron. Dev. 67, 2311 (2020).CrossRef N. Remesh, N. Mohan, S. Raghavan, R. Muralidharan, and D.N. Nath, Optimum carbon concentration in GaN-on-silicon for breakdown enhancement in AlGaN/GaN HEMTs. IEEE Trans. Electron. Dev. 67, 2311 (2020).CrossRef
39.
go back to reference D.-S. Kim, J.-B. Ha, S.-N. Kim, E.-H. Kwak, S.-G. Lee, H.-S. Kang, J.-S. Lee, K.-S. Im, K.-W. Kim, and J.-H. Lee, Normally-off operation of Al2O3/GaN MOSFET based on AlGaN/GaN heterostructure with p-GaN buffer layer, in Proceedings of International Symposium on Power Semiconductor, Hiroshima, Japan (2010), pp. 256–260. D.-S. Kim, J.-B. Ha, S.-N. Kim, E.-H. Kwak, S.-G. Lee, H.-S. Kang, J.-S. Lee, K.-S. Im, K.-W. Kim, and J.-H. Lee, Normally-off operation of Al2O3/GaN MOSFET based on AlGaN/GaN heterostructure with p-GaN buffer layer, in Proceedings of International Symposium on Power Semiconductor, Hiroshima, Japan (2010), pp. 256–260.
Metadata
Title
Investigation of Double RESURF P-GaN Gate AlGaN/GaN Heterostructure Field-Effect Transistors with Partial N-GaN Channels
Authors
Huan Li
Zhiyuan Bai
Lian Yang
Publication date
14-03-2024
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 5/2024
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-024-10987-0

Other articles of this Issue 5/2024

Journal of Electronic Materials 5/2024 Go to the issue