Skip to main content
Top
Published in: Optical and Quantum Electronics 11/2018

01-11-2018

Investigation of Euler spiral nanoantenna and its application in absorption enhancement of thin film solar cell

Authors: Abhishek Pahuja, Manoj Singh Parihar, V. Dinesh Kumar

Published in: Optical and Quantum Electronics | Issue 11/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A theoretical study on nanoantenna and its application in enhancing the performance of the thin film solar cell (TFSC) is presented. In this work, a novel design of nanoantenna i.e. Euler spiral nanoantenna (ESNA) is introduced, which has evolved after bending the conventional dipole nanoantenna in the manner of Euler spiral. The bending is performed up to an optimum length so that the antenna can equally respond to the two orthogonally polarized waves. Then the proposed nanoantenna in turnstile manner is examined for the intended application of enhancing the absorption in TFSCs. The antenna is placed on the absorber layer (Si amorphous) of the TFSC with a coating of Zinc Oxide. The simulation results show that the proposed ESNA can significantly increase the absorption in the absorber layer of the TFSC. The performance in terms of absorption and quantum efficiency of the solar cell incorporated with ESNA has been studied. ESNA confines the electric field in a larger area which results in absorption increase. The simulation results show that proposed ESNA can enhance the absorption up to 97.6% in the absorber layer and the photocurrent is enhanced by a factor of 1.39. To the best of our knowledge, this is the first study on Euler spiral nanoantenna and so as in its application with solar cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)ADSCrossRef Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)ADSCrossRef
go back to reference Brockett, T.J., Rajagopalan, H., Laghumavarapu, R.B., Hufakker, D., Rahmat-Samii, Y.: Electromagnetic characterization of high absorption sub-wavelength optical nanostructure photovoltaics for solar energy harvesting. IEEE Trans. Antennas Propag. 61(4), 1518–1527 (2013)ADSCrossRef Brockett, T.J., Rajagopalan, H., Laghumavarapu, R.B., Hufakker, D., Rahmat-Samii, Y.: Electromagnetic characterization of high absorption sub-wavelength optical nanostructure photovoltaics for solar energy harvesting. IEEE Trans. Antennas Propag. 61(4), 1518–1527 (2013)ADSCrossRef
go back to reference Chriki, R., Yanai, A., Shappir, J., Levy, U.: Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure. Opt. Exp. 21, A382–A391 (2013)ADSCrossRef Chriki, R., Yanai, A., Shappir, J., Levy, U.: Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure. Opt. Exp. 21, A382–A391 (2013)ADSCrossRef
go back to reference Di Vece, M., et al.: Plasmonic nano-antenna a-Si: H solar cell. Opt. Exp. 20, 27327–27336 (2012)ADSCrossRef Di Vece, M., et al.: Plasmonic nano-antenna a-Si: H solar cell. Opt. Exp. 20, 27327–27336 (2012)ADSCrossRef
go back to reference Dinesh Kumar, V., Asakawa, K.: Investigation of slot nanoantenna in optical frequency range. Photonics Nanostruct. Fundam. Appl. 7, 161–168 (2009)ADSCrossRef Dinesh Kumar, V., Asakawa, K.: Investigation of slot nanoantenna in optical frequency range. Photonics Nanostruct. Fundam. Appl. 7, 161–168 (2009)ADSCrossRef
go back to reference Dongaonkar, S., Servaites, J.D., et al.: Universality of non-Ohmic shunt leakage in thin-film solar cells. J. Appl. Phys. 108, 1–10 (2010)CrossRef Dongaonkar, S., Servaites, J.D., et al.: Universality of non-Ohmic shunt leakage in thin-film solar cells. J. Appl. Phys. 108, 1–10 (2010)CrossRef
go back to reference Farahani, J.N., et al.: Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys. Rev. Lett. 95, 1–4 (2005)CrossRef Farahani, J.N., et al.: Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys. Rev. Lett. 95, 1–4 (2005)CrossRef
go back to reference Green, M.A., Pillai, S.: Harnessing plasmonics for solar cells. Nat. Photonics 6, 130–132 (2012)ADSCrossRef Green, M.A., Pillai, S.: Harnessing plasmonics for solar cells. Nat. Photonics 6, 130–132 (2012)ADSCrossRef
go back to reference Johnson, P.B., Christy, R.W.: Optical constant of the noble metals. Phys. Rev. Lett. 15, 4370–4379 (1972) Johnson, P.B., Christy, R.W.: Optical constant of the noble metals. Phys. Rev. Lett. 15, 4370–4379 (1972)
go back to reference Konnen, G.P.: Polarized Light in Nature. Cambridge University Press, Cambridge (1985) Konnen, G.P.: Polarized Light in Nature. Cambridge University Press, Cambridge (1985)
go back to reference Krenn, J.R., et al.: Non diffraction-limited light transport by gold nanowires. Europhys. Lett. 60, 663–669 (2002)ADSCrossRef Krenn, J.R., et al.: Non diffraction-limited light transport by gold nanowires. Europhys. Lett. 60, 663–669 (2002)ADSCrossRef
go back to reference Law, S., et al.: All-semiconductor plasmonic nanoantennas for infrared sensing. Nano Letters 13(9), 4569–4574 (2013)ADSCrossRef Law, S., et al.: All-semiconductor plasmonic nanoantennas for infrared sensing. Nano Letters 13(9), 4569–4574 (2013)ADSCrossRef
go back to reference Maier, S.: Plasmonics: Fundamentals and Applications. Springer, Berlin (2007)CrossRef Maier, S.: Plasmonics: Fundamentals and Applications. Springer, Berlin (2007)CrossRef
go back to reference Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, Berlin (1986) Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, Berlin (1986)
go back to reference Rao, J., Varlamov, S.: Light trapping in thin film polycrystalline silicon solar cell using diffractive gratings. Energy Procedia 33, 129–136 (2013)CrossRef Rao, J., Varlamov, S.: Light trapping in thin film polycrystalline silicon solar cell using diffractive gratings. Energy Procedia 33, 129–136 (2013)CrossRef
go back to reference Sundaramurthy, A., et al.: Towards nanometer-scale optical photolithography: utilizing the near field of bowtie optical nanoantennas. Nano Letters 6, 355–360 (2006)ADSCrossRef Sundaramurthy, A., et al.: Towards nanometer-scale optical photolithography: utilizing the near field of bowtie optical nanoantennas. Nano Letters 6, 355–360 (2006)ADSCrossRef
go back to reference Taghian, F., Ahmadi, V., Yousefi, L.: Enhanced thin solar cells using optical nano-antenna induced hybrid plasmonic travelling-wave. IEEE J. Lightw. Technol. 34, 1267–1273 (2016)ADSCrossRef Taghian, F., Ahmadi, V., Yousefi, L.: Enhanced thin solar cells using optical nano-antenna induced hybrid plasmonic travelling-wave. IEEE J. Lightw. Technol. 34, 1267–1273 (2016)ADSCrossRef
go back to reference Vandenbosch, G.A.E., Ma, Z.: Upper bounds for the solar energy harvesting efficiency of nanoantennas. Nano Energy 1, 494–502 (2012)CrossRef Vandenbosch, G.A.E., Ma, Z.: Upper bounds for the solar energy harvesting efficiency of nanoantennas. Nano Energy 1, 494–502 (2012)CrossRef
go back to reference Yu, Y., et al.: Dielectric core–shell optical antennas for strong solar absorption enhancement. Nano Letters 12, 3674–3681 (2012)ADSCrossRef Yu, Y., et al.: Dielectric core–shell optical antennas for strong solar absorption enhancement. Nano Letters 12, 3674–3681 (2012)ADSCrossRef
go back to reference Yu-Yang, Y., et al.: Absorption enhancement and sensing properties of Ag diamond nanoantenna arrays. Chin. Phys. B 24, 1–6 (2015) Yu-Yang, Y., et al.: Absorption enhancement and sensing properties of Ag diamond nanoantenna arrays. Chin. Phys. B 24, 1–6 (2015)
go back to reference Zhu, L.-H., et al.: Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal. Opt. Exp. 21, A313–A323 (2013)CrossRef Zhu, L.-H., et al.: Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal. Opt. Exp. 21, A313–A323 (2013)CrossRef
Metadata
Title
Investigation of Euler spiral nanoantenna and its application in absorption enhancement of thin film solar cell
Authors
Abhishek Pahuja
Manoj Singh Parihar
V. Dinesh Kumar
Publication date
01-11-2018
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 11/2018
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-018-1665-z

Other articles of this Issue 11/2018

Optical and Quantum Electronics 11/2018 Go to the issue