Skip to main content
Top
Published in: Optical and Quantum Electronics 1/2024

01-01-2024

Investigation of fuzzy fractional Kuramoto–Sivashinsky equations by an efficient approach

Authors: Jamshad Ahmad, Fatima Nusrat

Published in: Optical and Quantum Electronics | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, we examine the Kuramoto–Sivashinsky equation, a nonlinear model that modifies a variety of physical and chemical scenarios. The main goal of this article is to find the analytical solution to the fuzzy fractional Kuramoto–Sivashinsky equations (FFKSEs). We employ the fractional reduced differential transform method (FRDTM) for dealing with the fractional Caputo operator. By using three examples, we tested the developed technique. The upper and lower parts of the fuzzy solutions for all three challenges were obtained using two different fractional-order simulations between 0 and 1. The attained series-type result was identified in the current investigation. The results show that the suggested strategy leads to accurate solutions at the integer level. The outcomes of applying the suggested methodology demonstrate the effectiveness and simplicity of our approach for analysing the behaviour of nonlinear models used in science and technology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abbasbandy, S.: The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett. A 360(1), 109–113 (2006)ADSMathSciNetCrossRef Abbasbandy, S.: The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett. A 360(1), 109–113 (2006)ADSMathSciNetCrossRef
go back to reference Ahmad, J., Mohyud-Din, S.T.: An efficient algorithm for some highly nonlinear fractional PDEs in mathematical physics. PLoS ONE 9(12), e109127 (2014) Ahmad, J., Mohyud-Din, S.T.: An efficient algorithm for some highly nonlinear fractional PDEs in mathematical physics. PLoS ONE 9(12), e109127 (2014)
go back to reference Ahmad, J., Iqbal, A., Hassan, Q.M.U.: Study of nonlinear fuzzy integro-differential equations using mathematical methods and applications. Int J Fuzzy Logic Intell Syst 21(1), 76–85 (2021)CrossRef Ahmad, J., Iqbal, A., Hassan, Q.M.U.: Study of nonlinear fuzzy integro-differential equations using mathematical methods and applications. Int J Fuzzy Logic Intell Syst 21(1), 76–85 (2021)CrossRef
go back to reference Akgül, A.: A novel method for a fractional derivative with non-local and non-singular kernel. Chaos Solitons Fractals 114, 478–482 (2018)ADSMathSciNetCrossRef Akgül, A.: A novel method for a fractional derivative with non-local and non-singular kernel. Chaos Solitons Fractals 114, 478–482 (2018)ADSMathSciNetCrossRef
go back to reference Akgül, A., Cordero, A., Torregrosa, J.R.: A fractional Newton method with 2ath-order of convergence and its stability. Appl. Math. Lett. 98, 344–351 (2019)MathSciNetCrossRef Akgül, A., Cordero, A., Torregrosa, J.R.: A fractional Newton method with 2ath-order of convergence and its stability. Appl. Math. Lett. 98, 344–351 (2019)MathSciNetCrossRef
go back to reference Al-Ghafri, K.S., Alabdala, A.T., Redhwan, S.S., Bazighifan, O., Ali, A.H., Iambor, L.F.: Symmetrical solutions for non-Local fractional integro-differential equations via Caputo–Katugampola derivatives. Symmetry 15(3), 662 (2023) Al-Ghafri, K.S., Alabdala, A.T., Redhwan, S.S., Bazighifan, O., Ali, A.H., Iambor, L.F.: Symmetrical solutions for non-Local fractional integro-differential equations via Caputo–Katugampola derivatives. Symmetry 15(3), 662 (2023)
go back to reference Ali, A., Islam, S., Khan, M.R., Rasheed, S., Allehiany, F.M., Baili, J., Ahmad, H.: Dynamics of a fractional order Zika virus model with mutant. Alexandria Eng. J. 61(6), 4821–4836 (2022)CrossRef Ali, A., Islam, S., Khan, M.R., Rasheed, S., Allehiany, F.M., Baili, J., Ahmad, H.: Dynamics of a fractional order Zika virus model with mutant. Alexandria Eng. J. 61(6), 4821–4836 (2022)CrossRef
go back to reference Ali, A., Alshammari, F.S., Islam, S., Khan, M.A., Ullah, S.: Modeling and analysis of the dynamics of novel coronavirus (COVID-19) with Caputo fractional derivative. Results Phys. 20, 103669 (2021) Ali, A., Alshammari, F.S., Islam, S., Khan, M.A., Ullah, S.: Modeling and analysis of the dynamics of novel coronavirus (COVID-19) with Caputo fractional derivative. Results Phys. 20, 103669 (2021)
go back to reference Aljahdaly, N. H., Naeem, M., Wyal, N.: Analysis of fuzzy Kuramoto–SSivashinsky equations under a generalized fuzzy fractional derivative operator. J. Funct. Spaces 2022, 1–11 (2022) Aljahdaly, N. H., Naeem, M., Wyal, N.: Analysis of fuzzy Kuramoto–SSivashinsky equations under a generalized fuzzy fractional derivative operator. J. Funct. Spaces 2022, 1–11 (2022)
go back to reference Arafa, A.A.M., Khalil, M., Sayed, A.: A non-integer variable order mathematical model of human immunodeficiency virus and malaria coinfection with time delay. Complexity 2019, 1–13 (2019) Arafa, A.A.M., Khalil, M., Sayed, A.: A non-integer variable order mathematical model of human immunodeficiency virus and malaria coinfection with time delay. Complexity 2019, 1–13 (2019)
go back to reference Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020) Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020)
go back to reference Behzadi, S.S., Allahviranloo, T., Abbasbandy, S.: Solving fuzzy second-order nonlinear Volterra–Fredholm integro-differential equations by using Picard method. Neural Comput. Appl. 21, 337–346 (2012)CrossRef Behzadi, S.S., Allahviranloo, T., Abbasbandy, S.: Solving fuzzy second-order nonlinear Volterra–Fredholm integro-differential equations by using Picard method. Neural Comput. Appl. 21, 337–346 (2012)CrossRef
go back to reference Boutarfa, B., Akgül, A., Inc, M.: New approach for the Fornberg–Whitham type equations. J. Comput. Appl. Math. 312, 13–26 (2017)MathSciNetCrossRef Boutarfa, B., Akgül, A., Inc, M.: New approach for the Fornberg–Whitham type equations. J. Comput. Appl. Math. 312, 13–26 (2017)MathSciNetCrossRef
go back to reference Caputo, M.: Elasticita de dissipazione, Zanichelli, Bologna (1969) Caputo, M.: Elasticita de dissipazione, Zanichelli, Bologna (1969)
go back to reference Chakraverty, S., Jena, R.M., Jena, S.K.: Time-Fractional Order Biological Systems with Uncertain Parameters, vol. 12, pp. 1–160. Morgan, Claypool Publishers, San Rafael (2011) Chakraverty, S., Jena, R.M., Jena, S.K.: Time-Fractional Order Biological Systems with Uncertain Parameters, vol. 12, pp. 1–160. Morgan, Claypool Publishers, San Rafael (2011)
go back to reference Choudhary, R., Kumar, D.: Numerical solution of linear time-fractional Kuramoto–Sivashinsky equation via quintic B-splines. Int. J. Comput. Math. 100(7), 1512–1531 (2023) Choudhary, R., Kumar, D.: Numerical solution of linear time-fractional Kuramoto–Sivashinsky equation via quintic B-splines. Int. J. Comput. Math. 100(7), 1512–1531 (2023)
go back to reference de Oliveira, E.C., Mainardi, F., Vaz, J., Jr.: Fractional models of anomalous relaxation based on the Kilbas and Saigo function. Meccanica 49(9), 2049–2060 (2014)MathSciNetCrossRef de Oliveira, E.C., Mainardi, F., Vaz, J., Jr.: Fractional models of anomalous relaxation based on the Kilbas and Saigo function. Meccanica 49(9), 2049–2060 (2014)MathSciNetCrossRef
go back to reference Dhaigude, D.B., Bhadgaonkar, V.N.: A novel approach for fractional Kawahara and modified Kawahara equations using Atangana–Baleanu derivative operator. J. Math. Comput. Sci. 11(3), 2792–2813 (2021) Dhaigude, D.B., Bhadgaonkar, V.N.: A novel approach for fractional Kawahara and modified Kawahara equations using Atangana–Baleanu derivative operator. J. Math. Comput. Sci. 11(3), 2792–2813 (2021)
go back to reference Dhaigude, D.B., Kiwne, S.B., Dhaigude, R.M.: Monotone iterative scheme for weakly coupled system of finite difference reaction–diffusion equations. Communications in Applied Analysis 12(2), 161 (2008) Dhaigude, D.B., Kiwne, S.B., Dhaigude, R.M.: Monotone iterative scheme for weakly coupled system of finite difference reaction–diffusion equations. Communications in Applied Analysis 12(2), 161 (2008)
go back to reference Dubois, D., Prade, H.: Towards fuzzy differential calculus part 1: integration of fuzzy mappings. Fuzzy Sets Syst. 8(1), 1–17 (1982)CrossRef Dubois, D., Prade, H.: Towards fuzzy differential calculus part 1: integration of fuzzy mappings. Fuzzy Sets Syst. 8(1), 1–17 (1982)CrossRef
go back to reference El-Saka, H.A.A., Arafa, A.A.M., Gouda, M.I.: Dynamical analysis of a fractional SIRS model on homogenous networks. Adv. Differ. Equ. 2019(1), 1–15 (2019)MathSciNetCrossRef El-Saka, H.A.A., Arafa, A.A.M., Gouda, M.I.: Dynamical analysis of a fractional SIRS model on homogenous networks. Adv. Differ. Equ. 2019(1), 1–15 (2019)MathSciNetCrossRef
go back to reference Figueiredo Camargo, R., Capelas de Oliveira, E., Vaz, J., Jr.: On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator. J. Math. Phys. 50(12), 123518 (2009) Figueiredo Camargo, R., Capelas de Oliveira, E., Vaz, J., Jr.: On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator. J. Math. Phys. 50(12), 123518 (2009)
go back to reference Fishelov, D., Croisille, J.P.: Optimal convergence for time-dependent linearized Kuramoto–Sivashinsky type problems: a new approach. J. Comput. Appl. Math. 429, 115229 (2023) Fishelov, D., Croisille, J.P.: Optimal convergence for time-dependent linearized Kuramoto–Sivashinsky type problems: a new approach. J. Comput. Appl. Math. 429, 115229 (2023)
go back to reference Gaul, L., Klein, P., Kemple, S.: Damping description involving fractional operators. Mech. Syst. Signal Process. 5(2), 81–88 (1991)ADSCrossRef Gaul, L., Klein, P., Kemple, S.: Damping description involving fractional operators. Mech. Syst. Signal Process. 5(2), 81–88 (1991)ADSCrossRef
go back to reference Haq, E.U., Hassan, Q.M.U., Ahmad, J., Ehsan, K.: Fuzzy solution of system of fuzzy fractional problems using a reliable method. Alex. Eng. J. 61(4), 3051–3058 (2022)CrossRef Haq, E.U., Hassan, Q.M.U., Ahmad, J., Ehsan, K.: Fuzzy solution of system of fuzzy fractional problems using a reliable method. Alex. Eng. J. 61(4), 3051–3058 (2022)CrossRef
go back to reference Iqbal, A., Ahmad, J., Hassan, Q.M.U.: Application of an effective method on the system of nonlinear fuzzy integro-differential equations. J. Sci. Arts 21(2), 407–422 (2021)CrossRef Iqbal, A., Ahmad, J., Hassan, Q.M.U.: Application of an effective method on the system of nonlinear fuzzy integro-differential equations. J. Sci. Arts 21(2), 407–422 (2021)CrossRef
go back to reference Iqbal, N., Khan, I., Shah, R., Nonlaopon, K.: The fuzzy fractional acoustic waves model in terms of the Caputo-Fabrizio operator. AIMS Math. 8(1), 1770–1783 (2023)MathSciNetCrossRef Iqbal, N., Khan, I., Shah, R., Nonlaopon, K.: The fuzzy fractional acoustic waves model in terms of the Caputo-Fabrizio operator. AIMS Math. 8(1), 1770–1783 (2023)MathSciNetCrossRef
go back to reference Jafari, M., Alipour Fakhri, Y., Khadivar, M.: Densities and fluxes of the conservation laws for the Kuramoto–Sivashinsky equation. J. Linear Topol. Algebra 11(01), 47–54 (2022) Jafari, M., Alipour Fakhri, Y., Khadivar, M.: Densities and fluxes of the conservation laws for the Kuramoto–Sivashinsky equation. J. Linear Topol. Algebra 11(01), 47–54 (2022)
go back to reference Jena, R.M., Chakraverty, S., Jena, S.K.: Analysis of the dynamics of phytoplankton nutrient and whooping cough models with nonsingular kernel arising in the biological system. Chaos Solitons Fractals 141, 110373 (2020) Jena, R.M., Chakraverty, S., Jena, S.K.: Analysis of the dynamics of phytoplankton nutrient and whooping cough models with nonsingular kernel arising in the biological system. Chaos Solitons Fractals 141, 110373 (2020)
go back to reference Jena, R.M., Chakraverty, S., Jena, S.K., Sedighi, H.M.: Analysis of time-fractional fuzzy vibration equation of large membranes using double parametric based Residual power series method. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 101(5), e202000165 (2021) Jena, R.M., Chakraverty, S., Jena, S.K., Sedighi, H.M.: Analysis of time-fractional fuzzy vibration equation of large membranes using double parametric based Residual power series method. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 101(5), e202000165 (2021)
go back to reference Jena, R.M., Chakraverty, S., Yavuz, M., Abdeljawad, T.: A new modeling and existence-uniqueness analysis for Babesiosis disease of fractional order. Mod. Phys. Lett. B 35(30), 2150443 (2021) Jena, R.M., Chakraverty, S., Yavuz, M., Abdeljawad, T.: A new modeling and existence-uniqueness analysis for Babesiosis disease of fractional order. Mod. Phys. Lett. B 35(30), 2150443 (2021)
go back to reference Kaur, A., Kanwar, V.: Numerical solution of generalized Kuramoto–Sivashinsky equation using cubic trigonometric B-spline based differential quadrature method and one-step optimized hybrid block method. Int. J. Appl. Comput. Math. 8, 1–19 (2022)MathSciNetCrossRef Kaur, A., Kanwar, V.: Numerical solution of generalized Kuramoto–Sivashinsky equation using cubic trigonometric B-spline based differential quadrature method and one-step optimized hybrid block method. Int. J. Appl. Comput. Math. 8, 1–19 (2022)MathSciNetCrossRef
go back to reference Keskin, Y., Oturanc, G.: The reduced differential transform method: a new approach to fractional partial differential equations. Nonlinear Sci. Lett. A 1(2), 207–217 (2010) Keskin, Y., Oturanc, G.: The reduced differential transform method: a new approach to fractional partial differential equations. Nonlinear Sci. Lett. A 1(2), 207–217 (2010)
go back to reference Khan, M.A., Ullah, S., Kumar, S.: A robust study on 2019-nCOV outbreaks through non-singular derivative. Eur. Phys. J. Plus 136, 1–20 (2021)CrossRef Khan, M.A., Ullah, S., Kumar, S.: A robust study on 2019-nCOV outbreaks through non-singular derivative. Eur. Phys. J. Plus 136, 1–20 (2021)CrossRef
go back to reference Kiliç, S. S. S., Çelik, E.: Complex solutions to the higher-order nonlinear Boussinesq type wave equation transform. Ricerche di Matematica 1–8 (2022) Kiliç, S. S. S., Çelik, E.: Complex solutions to the higher-order nonlinear Boussinesq type wave equation transform. Ricerche di Matematica 1–8 (2022)
go back to reference Kumar, S., Chauhan, R.P., Momani, S., Hadid, S.: Numerical investigations on COVID-19 model through singular and non-singular fractional operators. Numer. Methods Partial Differ. Equ. 36(1), 1–27 (2020) Kumar, S., Chauhan, R.P., Momani, S., Hadid, S.: Numerical investigations on COVID-19 model through singular and non-singular fractional operators. Numer. Methods Partial Differ. Equ. 36(1), 1–27 (2020)
go back to reference Kumar, D., Singh, J., Tanwar, K., Baleanu, D.: A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws. Int. J. Heat Mass Transf. 138, 1222–1227 (2019)CrossRef Kumar, D., Singh, J., Tanwar, K., Baleanu, D.: A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws. Int. J. Heat Mass Transf. 138, 1222–1227 (2019)CrossRef
go back to reference Kumar, S., Kumar, A., Samet, B., Dutta, H.: A study on fractional host-parasitoid population dynamical model to describe insect species. Numer. Methods Partial Differ. Equ. 37(2), 1673–1692 (2021)MathSciNetCrossRef Kumar, S., Kumar, A., Samet, B., Dutta, H.: A study on fractional host-parasitoid population dynamical model to describe insect species. Numer. Methods Partial Differ. Equ. 37(2), 1673–1692 (2021)MathSciNetCrossRef
go back to reference Kumar, S., Kumar, R., Osman, M.S., Samet, B.: A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials. Numer. Methods Partial Differ. Equ. 37(2), 1250–1268 (2021)MathSciNetCrossRef Kumar, S., Kumar, R., Osman, M.S., Samet, B.: A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials. Numer. Methods Partial Differ. Equ. 37(2), 1250–1268 (2021)MathSciNetCrossRef
go back to reference Liu, P., Din, A., Zarin, R.: Numerical dynamics and fractional modeling of hepatitis B virus model with non-singular and non-local kernels. Results Phys. 39, 105757 (2022) Liu, P., Din, A., Zarin, R.: Numerical dynamics and fractional modeling of hepatitis B virus model with non-singular and non-local kernels. Results Phys. 39, 105757 (2022)
go back to reference Mohammadi, H., Kumar, S., Rezapour, S., Etemad, S.: A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 144, 110668 (2021) Mohammadi, H., Kumar, S., Rezapour, S., Etemad, S.: A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 144, 110668 (2021)
go back to reference Niazi, A.U.K., Iqbal, N., Shah, R., Wannalookkhee, F., Nonlaopon, K.: Controllability for fuzzy fractional evolution equations in credibility space. Fractal Fract. 5(3), 112 (2021) Niazi, A.U.K., Iqbal, N., Shah, R., Wannalookkhee, F., Nonlaopon, K.: Controllability for fuzzy fractional evolution equations in credibility space. Fractal Fract. 5(3), 112 (2021)
go back to reference Osman, M., Xia, Y., Omer, O.A., Hamoud, A.: On the fuzzy solution of linear-nonlinear partial differential equations. Mathematics 10(13), 2295 (2022) Osman, M., Xia, Y., Omer, O.A., Hamoud, A.: On the fuzzy solution of linear-nonlinear partial differential equations. Mathematics 10(13), 2295 (2022)
go back to reference Rahman, M.U., Arfan, M., Deebani, W., Kumam, P., Shah, Z.: Analysis of time-fractional Kawahara equation under Mittag–Leffler power law. Fractals 30(01), 2240021 (2022) Rahman, M.U., Arfan, M., Deebani, W., Kumam, P., Shah, Z.: Analysis of time-fractional Kawahara equation under Mittag–Leffler power law. Fractals 30(01), 2240021 (2022)
go back to reference Ramani, P., Khan, A.M., Suthar, D.L., Kumar, D.: Approximate analytical solution for non-linear Fitzhugh–Nagumo equation of time fractional order through fractional reduced differential transform method. Int. J. Appl. Comput. Math. 8(2), 61 (2022) Ramani, P., Khan, A.M., Suthar, D.L., Kumar, D.: Approximate analytical solution for non-linear Fitzhugh–Nagumo equation of time fractional order through fractional reduced differential transform method. Int. J. Appl. Comput. Math. 8(2), 61 (2022)
go back to reference Saad Alshehry, A., Imran, M., Khan, A., Shah, R., Weera, W.: Fractional view analysis of Kuramoto–Sivashinsky equations with non-singular kernel operators. Symmetry 14(7), 1463 (2022)ADSCrossRef Saad Alshehry, A., Imran, M., Khan, A., Shah, R., Weera, W.: Fractional view analysis of Kuramoto–Sivashinsky equations with non-singular kernel operators. Symmetry 14(7), 1463 (2022)ADSCrossRef
go back to reference Seadawy, A.R., Iqbal, M., Lu, D.: Propagation of kink and anti-kink wave solitons for the nonlinear damped modified Korteweg–de Vries equation arising in ion-acoustic wave in an unmagnetized collisional dusty plasma. Physica A 544, 123560 (2020) Seadawy, A.R., Iqbal, M., Lu, D.: Propagation of kink and anti-kink wave solitons for the nonlinear damped modified Korteweg–de Vries equation arising in ion-acoustic wave in an unmagnetized collisional dusty plasma. Physica A 544, 123560 (2020)
go back to reference Shah, K., Seadawy, A.R., Arfan, M.: Evaluation of one dimensional fuzzy fractional partial differential equations. Alex. Eng. J. 59(5), 3347–3353 (2020)CrossRef Shah, K., Seadawy, A.R., Arfan, M.: Evaluation of one dimensional fuzzy fractional partial differential equations. Alex. Eng. J. 59(5), 3347–3353 (2020)CrossRef
go back to reference Singh, J., Hristov, J.Y., Hammouch, Z. (eds.): New Trends in Fractional Differential Equations with Real-World Applications in Physics. Frontiers Media SA, Lausanne (2020) Singh, J., Hristov, J.Y., Hammouch, Z. (eds.): New Trends in Fractional Differential Equations with Real-World Applications in Physics. Frontiers Media SA, Lausanne (2020)
go back to reference Singh, B.K., Kumar, P.: FRDTM for numerical simulation of multi-dimensional, time-fractional model of Navier–Stokes equation. Ain Shams Eng. J. 9(4), 827–834 (2018)CrossRef Singh, B.K., Kumar, P.: FRDTM for numerical simulation of multi-dimensional, time-fractional model of Navier–Stokes equation. Ain Shams Eng. J. 9(4), 827–834 (2018)CrossRef
go back to reference Sitthiwirattham, T., Arfan, M., Shah, K., Zeb, A., Djilali, S., Chasreechai, S.: Semi-analytical solutions for fuzzy Caputo–Fabrizio fractional-order two-dimensional heat equation. Fractal Fract. 5(4), 139 (2021) Sitthiwirattham, T., Arfan, M., Shah, K., Zeb, A., Djilali, S., Chasreechai, S.: Semi-analytical solutions for fuzzy Caputo–Fabrizio fractional-order two-dimensional heat equation. Fractal Fract. 5(4), 139 (2021)
go back to reference Sontakke, B.R., Shelke, A.S., Shaikh, A.S.: Solution of non-linear fractional differential equations by variational iteration method and applications. Far East J. Math. Sci. 110(1), 113–129 (2019) Sontakke, B.R., Shelke, A.S., Shaikh, A.S.: Solution of non-linear fractional differential equations by variational iteration method and applications. Far East J. Math. Sci. 110(1), 113–129 (2019)
go back to reference Tazgan, T., Celik, E., Gülnur, Y.E.L., Bulut, H.: On survey of the some wave solutions of the non-linear Schrödinger equation (NLSE) in Infinite Water Depth. Gazi Univ. J. Sci. 36(2), 819–843 (2023) Tazgan, T., Celik, E., Gülnur, Y.E.L., Bulut, H.: On survey of the some wave solutions of the non-linear Schrödinger equation (NLSE) in Infinite Water Depth. Gazi Univ. J. Sci. 36(2), 819–843 (2023)
go back to reference Thangavelu, Padmasekaran, S.: The exact solutions of heat equation by RDTM for the fractional order. In: AIP Conference Proceedings 2261, 1–5 (2020) Thangavelu, Padmasekaran, S.: The exact solutions of heat equation by RDTM for the fractional order. In: AIP Conference Proceedings 2261, 1–5 (2020)
go back to reference ur Rahman, M., Arfan, M., Shah, Z., Alzahrani, E.: Evolution of fractional mathematical model for drinking under Atangana-Baleanu Caputo derivatives. Physica Scripta 96(11), 115203 (2021) ur Rahman, M., Arfan, M., Shah, Z., Alzahrani, E.: Evolution of fractional mathematical model for drinking under Atangana-Baleanu Caputo derivatives. Physica Scripta 96(11), 115203 (2021)
go back to reference Wu, P., Din, A., Munir, T., Malik, M.Y., Alqahtani, A.S.: Local and global Hopf bifurcation analysis of an age-infection HIV dynamics model with cell-to-cell transmission. Waves Random Complex Media 1–16 (2022) Wu, P., Din, A., Munir, T., Malik, M.Y., Alqahtani, A.S.: Local and global Hopf bifurcation analysis of an age-infection HIV dynamics model with cell-to-cell transmission. Waves Random Complex Media 1–16 (2022)
go back to reference Yazgan, T., Ilhan, E., Çelik, E., Bulut, H.: On the new hyperbolic wave solutions to Wu–Zhang system models. Opt. Quant. Electron. 54(5), 298 (2022) Yazgan, T., Ilhan, E., Çelik, E., Bulut, H.: On the new hyperbolic wave solutions to Wu–Zhang system models. Opt. Quant. Electron. 54(5), 298 (2022)
go back to reference Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Springer, Berlin (2011) Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Springer, Berlin (2011)
Metadata
Title
Investigation of fuzzy fractional Kuramoto–Sivashinsky equations by an efficient approach
Authors
Jamshad Ahmad
Fatima Nusrat
Publication date
01-01-2024
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 1/2024
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05380-w

Other articles of this Issue 1/2024

Optical and Quantum Electronics 1/2024 Go to the issue