Skip to main content
Top
Published in: Journal of Materials Science 6/2017

23-11-2016 | Original Paper

Investigation of the electronic and optical properties of ZnS monolayer nanosheet: first principles calculations

Authors: M. Majidiyan Sarmazdeh, R. Taghavi Mendi, M. Mirzaei, I. Motie

Published in: Journal of Materials Science | Issue 6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, some of the electronic and optical properties of ZnS monolayer nanosheet have been calculated and compared with the bulk ZnS. The calculations were performed based on the density functional theory framework using full-potential linear augmented plane wave method, in which TB-modified Becke–Johnson potential has been considered for exchange–correlation term. The results show that the structural change of ZnS, from bulk to monolayer nanosheet, has dramatically affected its electronic and optical properties. The shift of van Hove singularities, variation of density of states, the appearance of energy gap in the valence band of ZnS monolayer nanosheet, and the elimination of degeneracy of the p and d orbitals in S and Zn atoms are some of the important effects. The calculated band gap of 3.88 eV, for bulk ZnS, is in good agreement with the experimental values. Also, there is a direct energy gap of about 3.22 eV for ZnS monolayer nanosheet. Compared to bulk ZnS, the optical anisotropy of ZnS monolayer nanosheet has significantly increased. With the structural change from the bulk ZnS to ZnS monolayer nanosheet, plasmon energies of ZnS monolayer are situated in the lower energies. We have proposed an equation for variations of refractive index as a function of wavelength and temperature, based on the experimental and ground-state data of bulk ZnS.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Han MY, Özyilmaz B, Zhang Y, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805CrossRef Han MY, Özyilmaz B, Zhang Y, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805CrossRef
3.
go back to reference Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803CrossRef Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803CrossRef
4.
go back to reference Minot E, Yaish Y, Sazonova V, Park JY, Brink M, McEuen PL (2003) Tuning carbon nanotube band gaps with strain. Phys Rev Lett 90:156401CrossRef Minot E, Yaish Y, Sazonova V, Park JY, Brink M, McEuen PL (2003) Tuning carbon nanotube band gaps with strain. Phys Rev Lett 90:156401CrossRef
5.
go back to reference Ouyang M, Huang JL, Cheung CL, Lieber CM (2001) Energy gaps in “metallic” single-walled carbon nanotubes. Science 292:702CrossRef Ouyang M, Huang JL, Cheung CL, Lieber CM (2001) Energy gaps in “metallic” single-walled carbon nanotubes. Science 292:702CrossRef
6.
go back to reference Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals”. Proc Nat Acad Sci USA 102(30):10451–10453CrossRef Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals”. Proc Nat Acad Sci USA 102(30):10451–10453CrossRef
7.
go back to reference Mingsheng Xu, Liang Tao, Shi Minmin, Chen Hongzheng (2013) Graphene-like two-dimensional materials. Chem Rev 113(5):3766–3798CrossRef Mingsheng Xu, Liang Tao, Shi Minmin, Chen Hongzheng (2013) Graphene-like two-dimensional materials. Chem Rev 113(5):3766–3798CrossRef
8.
go back to reference Freeman CL, Claeyssens F, Allan N, Harding JH (2006) Graphitic nanofilms as precursors to wurtzite films: theory. Phys Rev Lett 96:066102CrossRef Freeman CL, Claeyssens F, Allan N, Harding JH (2006) Graphitic nanofilms as precursors to wurtzite films: theory. Phys Rev Lett 96:066102CrossRef
9.
go back to reference Tusche C, Meyerheim HL, Kirschner J (2007) Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar Sheets. Phys Rev Lett 99:026102CrossRef Tusche C, Meyerheim HL, Kirschner J (2007) Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar Sheets. Phys Rev Lett 99:026102CrossRef
10.
go back to reference Fang X, Zhai T, Gautam UK, Li L, Wu L, Bando Y, Golberg D (2011) ZnS nanostructures: from synthesis to applications. Prog Mater Sci 56:175–287CrossRef Fang X, Zhai T, Gautam UK, Li L, Wu L, Bando Y, Golberg D (2011) ZnS nanostructures: from synthesis to applications. Prog Mater Sci 56:175–287CrossRef
11.
go back to reference Fang X, Bando Y, Gautam UK, Zhai T, Zeng H, Xu X, Liao M, Golberg D (2009) ZnO and ZnS Nanostructures: ultraviolet-light emitters, lasers, and sensors. Crit Rev Solid State Mater Sci 34:190–223CrossRef Fang X, Bando Y, Gautam UK, Zhai T, Zeng H, Xu X, Liao M, Golberg D (2009) ZnO and ZnS Nanostructures: ultraviolet-light emitters, lasers, and sensors. Crit Rev Solid State Mater Sci 34:190–223CrossRef
12.
go back to reference Lashgari H, Boochani A, Shekaari A, Solaymani Sh, Sartipi E, Mendi RT (2016) “Electronic and optical properties of 2D graphene-like ZnS: DFT calculations.”. Appl Surf Sci 369:76–81CrossRef Lashgari H, Boochani A, Shekaari A, Solaymani Sh, Sartipi E, Mendi RT (2016) “Electronic and optical properties of 2D graphene-like ZnS: DFT calculations.”. Appl Surf Sci 369:76–81CrossRef
13.
go back to reference Yamamoto Tetsuya, Kishimoto Seiichi, Iida Seishi (2001) Control of valence states for ZnS by triple-codoping method. Physica B 308:916–919CrossRef Yamamoto Tetsuya, Kishimoto Seiichi, Iida Seishi (2001) Control of valence states for ZnS by triple-codoping method. Physica B 308:916–919CrossRef
15.
go back to reference Xu CN, Watanabe T, Akiyama M, Zheng XG (1999) Artificial skin to sense mechanical stress by visible light emission. Appl Phys Lett 74:1236–1238CrossRef Xu CN, Watanabe T, Akiyama M, Zheng XG (1999) Artificial skin to sense mechanical stress by visible light emission. Appl Phys Lett 74:1236–1238CrossRef
16.
go back to reference Calandra P, Goffredi M, Liveri V (1999) Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy. Colloids Surf A 160(1):9–13CrossRef Calandra P, Goffredi M, Liveri V (1999) Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy. Colloids Surf A 160(1):9–13CrossRef
17.
go back to reference Kennedy TA, Glaser ER, Klein PB, Bhargava RN (1995) Symmetry and electronic structure of the Mn impurity in ZnS nanocrystals. Phys Rev B 52:R14356–R14359CrossRef Kennedy TA, Glaser ER, Klein PB, Bhargava RN (1995) Symmetry and electronic structure of the Mn impurity in ZnS nanocrystals. Phys Rev B 52:R14356–R14359CrossRef
18.
go back to reference Yu S, Yoshimura M (2002) Shape and phase control of ZnS nanocrystals: template fabrication of wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS·(NH2CH2CH2NH2)0.5. Adv Mater 14:296–300CrossRef Yu S, Yoshimura M (2002) Shape and phase control of ZnS nanocrystals: template fabrication of wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS·(NH2CH2CH2NH2)0.5. Adv Mater 14:296–300CrossRef
19.
go back to reference Krainara N, Limtrakul J, Illas F, Bromley ST (2011) Structural and electronic bistability in ZnS single sheets and single-walled nanotubes. Phys Rev B 83:233305CrossRef Krainara N, Limtrakul J, Illas F, Bromley ST (2011) Structural and electronic bistability in ZnS single sheets and single-walled nanotubes. Phys Rev B 83:233305CrossRef
20.
go back to reference Lei Y, Chen F, Li R, Xu J (2014) A facile solvothermal method to produce graphene-ZnS composites for superior photoelectric applications. Appl Surf Sci 308:206–210CrossRef Lei Y, Chen F, Li R, Xu J (2014) A facile solvothermal method to produce graphene-ZnS composites for superior photoelectric applications. Appl Surf Sci 308:206–210CrossRef
21.
go back to reference Kole AK, Kumbhakar P, Ganguly T (2014) Observations of unusual temperature dependent photoluminescence anti-quenching in two-dimensional nanosheets of ZnS/ZnO composites and polarization dependent photoluminescence enhancement in fungi-like ZnO nanostructures. J Appl Phys 115:224306CrossRef Kole AK, Kumbhakar P, Ganguly T (2014) Observations of unusual temperature dependent photoluminescence anti-quenching in two-dimensional nanosheets of ZnS/ZnO composites and polarization dependent photoluminescence enhancement in fungi-like ZnO nanostructures. J Appl Phys 115:224306CrossRef
22.
go back to reference Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k, An augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Vienna Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k, An augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Vienna
23.
go back to reference Schwarz Karlheinz, Blaha P, Madsen GKH (2002) Electronic structure calculations of solids using the WIEN2 k package for material sciences. Comput Phys Commun 147(1):71–76CrossRef Schwarz Karlheinz, Blaha P, Madsen GKH (2002) Electronic structure calculations of solids using the WIEN2 k package for material sciences. Comput Phys Commun 147(1):71–76CrossRef
24.
go back to reference Tran Fabien, Blaha Peter (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. PRL 102:226401CrossRef Tran Fabien, Blaha Peter (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. PRL 102:226401CrossRef
25.
go back to reference Peng Qing, Han Liang, Wen Xiaodong, Liu Sheng, Chen Zhongfang, Lian Jie, De Suvranu (2015) Mechanical properties and stabilities of g-ZnS monolayers. RSC Adv 5:11240–11247CrossRef Peng Qing, Han Liang, Wen Xiaodong, Liu Sheng, Chen Zhongfang, Lian Jie, De Suvranu (2015) Mechanical properties and stabilities of g-ZnS monolayers. RSC Adv 5:11240–11247CrossRef
26.
go back to reference Behera Harihar, Mukhopadhyay Gautam (2014) Tailoring the structural and electronic properties of graphene-like ZnS monolayer using biaxial strain. J Phys D 47:075302CrossRef Behera Harihar, Mukhopadhyay Gautam (2014) Tailoring the structural and electronic properties of graphene-like ZnS monolayer using biaxial strain. J Phys D 47:075302CrossRef
27.
go back to reference Yeh Chin-Yu, Lu ZW, Froyen S, Zunger A (1992) “Zinc-blende–wurtzite polytypism in semiconductors”. Phys Rev B 46:10086CrossRef Yeh Chin-Yu, Lu ZW, Froyen S, Zunger A (1992) “Zinc-blende–wurtzite polytypism in semiconductors”. Phys Rev B 46:10086CrossRef
28.
go back to reference Shu-Hong Yu, Yang Jian, Qian Yi-Tai, Yoshimura Masahiro (2002) Optical properties of ZnS nanosheets, ZnO dendrites, and their lamellar precursor ZnS (NH2CH2CH2NH2)0.5. Chem Phys Lett 361:362–366CrossRef Shu-Hong Yu, Yang Jian, Qian Yi-Tai, Yoshimura Masahiro (2002) Optical properties of ZnS nanosheets, ZnO dendrites, and their lamellar precursor ZnS (NH2CH2CH2NH2)0.5. Chem Phys Lett 361:362–366CrossRef
29.
go back to reference Bergstresser TK, Cohen ML (1967) Electronic structure and optical properties of hexagonal CdSe, CdS, and ZnS. Phys Rev 164:1069CrossRef Bergstresser TK, Cohen ML (1967) Electronic structure and optical properties of hexagonal CdSe, CdS, and ZnS. Phys Rev 164:1069CrossRef
30.
go back to reference Hellwege KH, Madelung O (1982) Landolt-bornstein, numerical data and functional relationships in science and technology, New series, group III, vol 17a. Springer, New York Hellwege KH, Madelung O (1982) Landolt-bornstein, numerical data and functional relationships in science and technology, New series, group III, vol 17a. Springer, New York
31.
go back to reference Kobayashi A, Sankey OF, Volz SM, Dow JD (1983) Semiempirical tight-binding band structures of wurtzite semiconductors: AlN, CdS, CdSe, ZnS, and ZnO. Phys Rev B 28:935CrossRef Kobayashi A, Sankey OF, Volz SM, Dow JD (1983) Semiempirical tight-binding band structures of wurtzite semiconductors: AlN, CdS, CdSe, ZnS, and ZnO. Phys Rev B 28:935CrossRef
32.
go back to reference Gorkavenko TV, Zubkova SM, Makara VA, Rusina LN (2007) Temperature dependence of the band structure of ZnS, ZnSe, ZnTe, and CdTe wurtzite-type semiconductor compounds. Semiconductors 41(8):886–896CrossRef Gorkavenko TV, Zubkova SM, Makara VA, Rusina LN (2007) Temperature dependence of the band structure of ZnS, ZnSe, ZnTe, and CdTe wurtzite-type semiconductor compounds. Semiconductors 41(8):886–896CrossRef
33.
go back to reference Drew RE, Davis EA, Leiga AG (1967) Reflectivity spectra of Cd1−xZnxS single crystals. Phys Rev Lett 18:1194CrossRef Drew RE, Davis EA, Leiga AG (1967) Reflectivity spectra of Cd1−xZnxS single crystals. Phys Rev Lett 18:1194CrossRef
34.
go back to reference J. W. Baars (1968) in Proceedings of the International Conference on II-VI Semiconducting Compounds, Providence, 1967, edited by D. G. Thomas (Benjamin, New York, ), p 631 J. W. Baars (1968) in Proceedings of the International Conference on II-VI Semiconducting Compounds, Providence, 1967, edited by D. G. Thomas (Benjamin, New York, ), p 631
35.
go back to reference Data in Science and Technology; Semiconductors other than group IV elements and III–V compounds, 1992 Springer, Berlin pp 26–27 Data in Science and Technology; Semiconductors other than group IV elements and III–V compounds, 1992 Springer, Berlin pp 26–27
36.
go back to reference Zakharov Oleg, Rubio Angel, Blase X, Cohen ML, Louie SG (1994) “Quasiparticle band structures of six II–VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe”. Phys Rev B 50:10780CrossRef Zakharov Oleg, Rubio Angel, Blase X, Cohen ML, Louie SG (1994) “Quasiparticle band structures of six II–VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe”. Phys Rev B 50:10780CrossRef
37.
go back to reference Hattori T, Homma Y, Mitsuishi A, Tacke M (1973) Indices of refraction of ZnS, ZnSe, ZnTe, CdS, and CdTe in the far infrared. Opt Commun 7:229–232CrossRef Hattori T, Homma Y, Mitsuishi A, Tacke M (1973) Indices of refraction of ZnS, ZnSe, ZnTe, CdS, and CdTe in the far infrared. Opt Commun 7:229–232CrossRef
38.
go back to reference Ghosh Gorachand (1997) Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses. Appl Opt 36(7):1540–1546CrossRef Ghosh Gorachand (1997) Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses. Appl Opt 36(7):1540–1546CrossRef
Metadata
Title
Investigation of the electronic and optical properties of ZnS monolayer nanosheet: first principles calculations
Authors
M. Majidiyan Sarmazdeh
R. Taghavi Mendi
M. Mirzaei
I. Motie
Publication date
23-11-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 6/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0555-7

Other articles of this Issue 6/2017

Journal of Materials Science 6/2017 Go to the issue

Premium Partners