Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 5/2019

30-04-2019

Investigation on Equal-Channel Angular Pressing-Induced Grain Refinement in an Aluminum Matrix Composite Reinforced with Al-Cu-Ti Metallic Glass Particles

Authors: M. R. Rezaei, S. G. Shabestari, S. H. Razavi

Published in: Journal of Materials Engineering and Performance | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present study, a homogeneous ultrafine grain structure composite consisting of metallic glass particles reinforcements was developed by equal-channel angular pressing (ECAP) process. The microstructure of composite was characterized using x-ray diffraction (XRD), transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD) techniques. The uniaxial compression test was used to determine the mechanical properties. The mechanisms of grain refinement during ECAP process were discussed based on the microstructural evolutions. A composite was successfully produced after four passes of ECAP, having an average grain size of 610 nm and compressive yield strength of 242 MPa. Also, the yield strength of composite after each pass was quantitatively estimated by considering all the effective strengthening mechanism. The findings showed that the dislocations strengthening mechanism with contribution of more than 50% plays a major role in strengthening the composite. There was a negligible gap between the experimental and theoretical values of yield strength for all ECAP pass numbers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung, Mechanical Behavior and Strengthening Mechanisms in Ultrafine grain Precipitation-Strengthened Aluminum Alloy, Acta Mater., 2014, 62, p 141–155CrossRef K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung, Mechanical Behavior and Strengthening Mechanisms in Ultrafine grain Precipitation-Strengthened Aluminum Alloy, Acta Mater., 2014, 62, p 141–155CrossRef
2.
go back to reference L.S. Toth and C. Gu, Ultrafine-Grain Metals by Severe Plastic Deformation, Mater. Charact., 2014, 92, p 1–14CrossRef L.S. Toth and C. Gu, Ultrafine-Grain Metals by Severe Plastic Deformation, Mater. Charact., 2014, 92, p 1–14CrossRef
3.
go back to reference L. Hou, T. Wang, R. Wu, J. Zhang, M. Zhang, A. Dong, B. Sun, S. Betsofen, and B. Krit, Microstructure and Mechanical Properties of Mg-5Li-1Al Sheets Prepared by Accumulative Roll Bonding, J. Mater. Sci. Technol., 2018, 34(2), p 317–323CrossRef L. Hou, T. Wang, R. Wu, J. Zhang, M. Zhang, A. Dong, B. Sun, S. Betsofen, and B. Krit, Microstructure and Mechanical Properties of Mg-5Li-1Al Sheets Prepared by Accumulative Roll Bonding, J. Mater. Sci. Technol., 2018, 34(2), p 317–323CrossRef
4.
go back to reference J. Jiang, J. Shi, Y. Yao, A. Ma, D. Song, D. Yang, J. Chen, and F. Lu, Dynamic Compression Properties of an Ultrafine-Grained Al-26wt.% Si Alloy Fabricated by Equal-Channel Angular Pressing, J. Mater. Eng. Perform., 2015, 24(5), p 2016–2024CrossRef J. Jiang, J. Shi, Y. Yao, A. Ma, D. Song, D. Yang, J. Chen, and F. Lu, Dynamic Compression Properties of an Ultrafine-Grained Al-26wt.% Si Alloy Fabricated by Equal-Channel Angular Pressing, J. Mater. Eng. Perform., 2015, 24(5), p 2016–2024CrossRef
5.
go back to reference H. Pouraliakbar and M.R. Jandaghi, Mechanistic Insight into the Role of Severe Plastic Deformation and Post-deformation Annealing in Fracture Behavior of Al-Mn-Si Alloy, Mech. Mater., 2018, 122, p 145–158CrossRef H. Pouraliakbar and M.R. Jandaghi, Mechanistic Insight into the Role of Severe Plastic Deformation and Post-deformation Annealing in Fracture Behavior of Al-Mn-Si Alloy, Mech. Mater., 2018, 122, p 145–158CrossRef
6.
go back to reference M.R. Jandaghi and H. Pouraliakbar, Elucidating the Microscopic Origin of Electrochemical Corrosion and Electrical Conductivity by Lattice Response to Severe Plastic Deformation in Al-Mn-Si Alloy, Mater. Res. Bull., 2018, 108, p 195–206CrossRef M.R. Jandaghi and H. Pouraliakbar, Elucidating the Microscopic Origin of Electrochemical Corrosion and Electrical Conductivity by Lattice Response to Severe Plastic Deformation in Al-Mn-Si Alloy, Mater. Res. Bull., 2018, 108, p 195–206CrossRef
7.
go back to reference H. Ashuri and A. Hassani, Characterization of Severely Deformed New Composites Fabricated by Powder Metallurgy Including a Stage of Mechanical Alloying, J. Alloys Compd., 2014, 617, p 444–454CrossRef H. Ashuri and A. Hassani, Characterization of Severely Deformed New Composites Fabricated by Powder Metallurgy Including a Stage of Mechanical Alloying, J. Alloys Compd., 2014, 617, p 444–454CrossRef
8.
go back to reference H. Pouraliakbar, M.R. Jandaghi, A. Heidarzadeh, and M.M. Jandaghi, Constrained Groove Pressing, Cold-Rolling, and Post-deformation Isothermal Annealing: Consequences of Their Synergy on Material Behavior, Mater. Chem. Phys., 2018, 206, p 85–93CrossRef H. Pouraliakbar, M.R. Jandaghi, A. Heidarzadeh, and M.M. Jandaghi, Constrained Groove Pressing, Cold-Rolling, and Post-deformation Isothermal Annealing: Consequences of Their Synergy on Material Behavior, Mater. Chem. Phys., 2018, 206, p 85–93CrossRef
9.
go back to reference M. Baig, E. El-Danaf, and J.A. Mohammed, A Study on the Synergistic Effect of ECAP and Aging Treatment on the Mechanical Properties of AA6082, J. Mater. Eng. Perform., 2016, 25(12), p 5252–5261CrossRef M. Baig, E. El-Danaf, and J.A. Mohammed, A Study on the Synergistic Effect of ECAP and Aging Treatment on the Mechanical Properties of AA6082, J. Mater. Eng. Perform., 2016, 25(12), p 5252–5261CrossRef
10.
go back to reference R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 2000, 45(2), p 103–189CrossRef R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 2000, 45(2), p 103–189CrossRef
11.
go back to reference M. Balog, F. Simancik, O. Bajana, and G. Requena, ECAP vs. Direct Extrusion—Techniques for Consolidation of Ultra-Fine Al Particles, Mater. Sci. Eng. A, 2009, 504(1), p 1–7CrossRef M. Balog, F. Simancik, O. Bajana, and G. Requena, ECAP vs. Direct Extrusion—Techniques for Consolidation of Ultra-Fine Al Particles, Mater. Sci. Eng. A, 2009, 504(1), p 1–7CrossRef
12.
go back to reference K. Xia and X. Wu, Back Pressure Equal Channel Angular Consolidation of Pure Al Particles, Scripta Mater., 2005, 53(11), p 1225–1229CrossRef K. Xia and X. Wu, Back Pressure Equal Channel Angular Consolidation of Pure Al Particles, Scripta Mater., 2005, 53(11), p 1225–1229CrossRef
13.
go back to reference R. Lapovok, D. Tomus, and B.C. Muddle, Low-Temperature Compaction of Ti–6Al–4 V Powder Using Equal Channel Angular Extrusion with Back Pressure, Mater. Sci. Eng. A, 2008, 490(1–2), p 171–180CrossRef R. Lapovok, D. Tomus, and B.C. Muddle, Low-Temperature Compaction of Ti–6Al–4 V Powder Using Equal Channel Angular Extrusion with Back Pressure, Mater. Sci. Eng. A, 2008, 490(1–2), p 171–180CrossRef
14.
go back to reference P. Quang, Y.G. Jeong, S.C. Yoon, S.H. Hong, and H.S. Kim, Consolidation of 1vol.% Carbon Nanotube Reinforced Metal Matrix Nanocomposites via Equal Channel Angular Pressing, J. Mater. Process. Technol., 2007, 187-188, p 318–320CrossRef P. Quang, Y.G. Jeong, S.C. Yoon, S.H. Hong, and H.S. Kim, Consolidation of 1vol.% Carbon Nanotube Reinforced Metal Matrix Nanocomposites via Equal Channel Angular Pressing, J. Mater. Process. Technol., 2007, 187-188, p 318–320CrossRef
15.
go back to reference O.N. Senkov, D.B. Miracle, J.M. Scott, and S.V. Senkova, Equal Channel Angular Extrusion Compaction of Semi-amorphous Al85Ni10Y2.5La2.5 Alloy Powder, J. Alloys Compd., 2004, 365(1), p 126–133CrossRef O.N. Senkov, D.B. Miracle, J.M. Scott, and S.V. Senkova, Equal Channel Angular Extrusion Compaction of Semi-amorphous Al85Ni10Y2.5La2.5 Alloy Powder, J. Alloys Compd., 2004, 365(1), p 126–133CrossRef
16.
go back to reference R. Lapovok, D. Tomus, and C. Bettles, Shear Deformation with Imposed Hydrostatic Pressure for Enhanced Compaction of Powder, Scr. Mater., 2008, 58(10), p 898–901CrossRef R. Lapovok, D. Tomus, and C. Bettles, Shear Deformation with Imposed Hydrostatic Pressure for Enhanced Compaction of Powder, Scr. Mater., 2008, 58(10), p 898–901CrossRef
17.
go back to reference W. Xu, X. Wu, T. Honma, S.P. Ringer, and K. Xia, Nanostructured Al–Al2O3 Composite Formed In Situ During Consolidation of Ultrafine Al Particles by Back Pressure Equal Channel Angular Pressing, Acta Mater., 2009, 57(14), p 4321–4330CrossRef W. Xu, X. Wu, T. Honma, S.P. Ringer, and K. Xia, Nanostructured Al–Al2O3 Composite Formed In Situ During Consolidation of Ultrafine Al Particles by Back Pressure Equal Channel Angular Pressing, Acta Mater., 2009, 57(14), p 4321–4330CrossRef
18.
go back to reference D. Zhou, W. Zeng, and D. Zhang, A Feasible Ultrafine Grained Cu Matrix Composite Microstructure for Achieving High Strength and High Electrical Conductivity, J. Alloys Compd., 2016, 682, p 590–593CrossRef D. Zhou, W. Zeng, and D. Zhang, A Feasible Ultrafine Grained Cu Matrix Composite Microstructure for Achieving High Strength and High Electrical Conductivity, J. Alloys Compd., 2016, 682, p 590–593CrossRef
19.
go back to reference D. Dudina, K. Georgarakis, M. Aljerf, Y. Li, M. Braccini, A. Yavari, and A. Inoue, Cu-Based Metallic Glass Particle Additions to Significantly Improve Overall Compressive Properties of an Al Alloy, Compos. A Appl. Sci. Manuf., 2010, 41(10), p 1551–1557CrossRef D. Dudina, K. Georgarakis, M. Aljerf, Y. Li, M. Braccini, A. Yavari, and A. Inoue, Cu-Based Metallic Glass Particle Additions to Significantly Improve Overall Compressive Properties of an Al Alloy, Compos. A Appl. Sci. Manuf., 2010, 41(10), p 1551–1557CrossRef
20.
go back to reference M.H. Lee, J.H. Kim, J.S. Park, J.C. Kim, W.T. Kim, and D.H. Kim, Fabrication of Ni–Nb–Ta Metallic glass Reinforced Al-Based Alloy Matrix Composites by Infiltration Casting Process, Scr. Mater., 2004, 50(11), p 1367–1371CrossRef M.H. Lee, J.H. Kim, J.S. Park, J.C. Kim, W.T. Kim, and D.H. Kim, Fabrication of Ni–Nb–Ta Metallic glass Reinforced Al-Based Alloy Matrix Composites by Infiltration Casting Process, Scr. Mater., 2004, 50(11), p 1367–1371CrossRef
21.
go back to reference J. Qiao, H. Jia, and P.K. Liaw, Metallic Glass Matrix Composites, Mater. Sci. Eng. R Rep., 2016, 100, p 1–69CrossRef J. Qiao, H. Jia, and P.K. Liaw, Metallic Glass Matrix Composites, Mater. Sci. Eng. R Rep., 2016, 100, p 1–69CrossRef
22.
go back to reference M. Aljerf, K. Georgarakis, D. Louzguine-Luzgin, A. Le Moulec, A. Inoue, and A. Yavari, Strong and Light Metal Matrix Composites with Metallic Glass Particulate Reinforcement, Mater. Sci. Eng. A, 2012, 532, p 325–330CrossRef M. Aljerf, K. Georgarakis, D. Louzguine-Luzgin, A. Le Moulec, A. Inoue, and A. Yavari, Strong and Light Metal Matrix Composites with Metallic Glass Particulate Reinforcement, Mater. Sci. Eng. A, 2012, 532, p 325–330CrossRef
23.
go back to reference X.M. Luo, Y. Zhou, J.Q. Lu, G.S. Yu, J.G. Lin, and W. Li, Microstructural and Mechanical Behavior of Zr-Based Metallic Glasses with the Addition of Nb, J. Mater. Sci., 2009, 44(16), p 4389–4393CrossRef X.M. Luo, Y. Zhou, J.Q. Lu, G.S. Yu, J.G. Lin, and W. Li, Microstructural and Mechanical Behavior of Zr-Based Metallic Glasses with the Addition of Nb, J. Mater. Sci., 2009, 44(16), p 4389–4393CrossRef
24.
go back to reference R. Zheng, H. Yang, T. Liu, K. Ameyama, and C. Ma, Microstructure and Mechanical Properties of Aluminum Alloy Matrix Composites Reinforced with Fe-Based Metallic Glass Particles, Mater. Des., 2014, 53, p 512–518CrossRef R. Zheng, H. Yang, T. Liu, K. Ameyama, and C. Ma, Microstructure and Mechanical Properties of Aluminum Alloy Matrix Composites Reinforced with Fe-Based Metallic Glass Particles, Mater. Des., 2014, 53, p 512–518CrossRef
25.
go back to reference Z. Wang, J. Tan, S. Scudino, B.A. Sun, R.T. Qu, J. He, K.G. Prashanth, W.W. Zhang, Y.Y. Li, and J. Eckert, Mechanical Behavior of Al-Based Matrix Composites Reinforced with Mg58Cu28.5Gd11Ag2.5 Metallic Glasses, Adv. Powder Technol., 2014, 25(2), p 635–639CrossRef Z. Wang, J. Tan, S. Scudino, B.A. Sun, R.T. Qu, J. He, K.G. Prashanth, W.W. Zhang, Y.Y. Li, and J. Eckert, Mechanical Behavior of Al-Based Matrix Composites Reinforced with Mg58Cu28.5Gd11Ag2.5 Metallic Glasses, Adv. Powder Technol., 2014, 25(2), p 635–639CrossRef
26.
go back to reference Q. Yang, Y. Zhang, H. Zhang, R. Zheng, W. Xiao, and C. Ma, Fabrication of Al-Based Composites Reinforced with In Situ Devitrified Al84Ni8.4Y4.8La1.8Co1 Particles by Hot Pressing Consolidation, J. Alloys Compd., 2015, 648, p 382–388CrossRef Q. Yang, Y. Zhang, H. Zhang, R. Zheng, W. Xiao, and C. Ma, Fabrication of Al-Based Composites Reinforced with In Situ Devitrified Al84Ni8.4Y4.8La1.8Co1 Particles by Hot Pressing Consolidation, J. Alloys Compd., 2015, 648, p 382–388CrossRef
27.
go back to reference S. Jayalakshmi and M. Gupta, Metallic Amorphous Alloy Reinforcements in Light Metal Matrices, Springer, New York, 2015CrossRef S. Jayalakshmi and M. Gupta, Metallic Amorphous Alloy Reinforcements in Light Metal Matrices, Springer, New York, 2015CrossRef
28.
go back to reference M.R. Rezaei, S.H. Razavi, and S.G. Shabestari, Development of a Novel Al–Cu–Ti Metallic Glass Reinforced Al Matrix Composite Consolidated Through Equal Channel Angular Pressing (ECAP), J. Alloys Compd., 2016, 673, p 17–27CrossRef M.R. Rezaei, S.H. Razavi, and S.G. Shabestari, Development of a Novel Al–Cu–Ti Metallic Glass Reinforced Al Matrix Composite Consolidated Through Equal Channel Angular Pressing (ECAP), J. Alloys Compd., 2016, 673, p 17–27CrossRef
29.
go back to reference M. Rezaei, S. Shabestari, and S. Razavi, Effect of ECAP Consolidation Temperature on the Microstructure and Mechanical Properties of Al-Cu-Ti Metallic Glass Reinforced Aluminum Matrix Composite, J. Mater. Sci. Technol., 2017, 33, p 1031–1038CrossRef M. Rezaei, S. Shabestari, and S. Razavi, Effect of ECAP Consolidation Temperature on the Microstructure and Mechanical Properties of Al-Cu-Ti Metallic Glass Reinforced Aluminum Matrix Composite, J. Mater. Sci. Technol., 2017, 33, p 1031–1038CrossRef
30.
go back to reference M.H. Farshidi, M. Kazeminezhad, and H. Miyamoto, Severe Plastic Deformation of 6061 Aluminum Alloy Tube with Pre and Post Heat Treatments, Mater. Sci. Eng. A, 2013, 563, p 60–67CrossRef M.H. Farshidi, M. Kazeminezhad, and H. Miyamoto, Severe Plastic Deformation of 6061 Aluminum Alloy Tube with Pre and Post Heat Treatments, Mater. Sci. Eng. A, 2013, 563, p 60–67CrossRef
31.
go back to reference G.K. Williamson and W.H. Hall, X-ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall., 1953, 1(1), p 22–31CrossRef G.K. Williamson and W.H. Hall, X-ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall., 1953, 1(1), p 22–31CrossRef
32.
go back to reference B.E. Warren, X-ray Diffraction, Courier Corporation, New York, 1969 B.E. Warren, X-ray Diffraction, Courier Corporation, New York, 1969
33.
go back to reference Y. Han, J. Li, G. Huang, Y. Lv, X. Shao, W. Lu, and D. Zhang, Effect of ECAP Numbers on Microstructure and Properties of Titanium Matrix Composite, Mater. Des., 2015, 75, p 113–119CrossRef Y. Han, J. Li, G. Huang, Y. Lv, X. Shao, W. Lu, and D. Zhang, Effect of ECAP Numbers on Microstructure and Properties of Titanium Matrix Composite, Mater. Des., 2015, 75, p 113–119CrossRef
34.
go back to reference S. Amirkhanlou, M. Ketabchi, N. Parvin, A. Orozco-Caballero, and F. Carreño, Homogeneous and Ultrafine-Grained Metal Matrix Nanocomposite Achieved by Accumulative Press Bonding as a Novel Severe Plastic Deformation Process, Scr. Mater., 2015, 100, p 40–43CrossRef S. Amirkhanlou, M. Ketabchi, N. Parvin, A. Orozco-Caballero, and F. Carreño, Homogeneous and Ultrafine-Grained Metal Matrix Nanocomposite Achieved by Accumulative Press Bonding as a Novel Severe Plastic Deformation Process, Scr. Mater., 2015, 100, p 40–43CrossRef
35.
go back to reference D. Kuhlmann-Wilsdorf, H. Wilsdorf, and J. Wert, LEDS theory of workhardening stages and “planar” versus “distributed” glide, Scr. Metall. Mater., 1994, 31(6), p 729–734CrossRef D. Kuhlmann-Wilsdorf, H. Wilsdorf, and J. Wert, LEDS theory of workhardening stages and “planar” versus “distributed” glide, Scr. Metall. Mater., 1994, 31(6), p 729–734CrossRef
36.
go back to reference F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam, 2012 F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam, 2012
37.
go back to reference S. Jayalakshmi, S. Sahu, S. Sankaranarayanan, S. Gupta, and M. Gupta, Development of Novel Mg–Ni 60 Nb 40 Amorphous Particle Reinforced Composites with Enhanced Hardness and Compressive Response, Mater. Des., 2014, 53, p 849–855CrossRef S. Jayalakshmi, S. Sahu, S. Sankaranarayanan, S. Gupta, and M. Gupta, Development of Novel Mg–Ni 60 Nb 40 Amorphous Particle Reinforced Composites with Enhanced Hardness and Compressive Response, Mater. Des., 2014, 53, p 849–855CrossRef
38.
go back to reference M.R. Rezaei, S.G. Shabestari, and S.H. Razavi, Effect of ECAP Consolidation Process on the Interfacial Characteristics of Al-Cu-Ti Metallic Glass Reinforced Aluminum Matrix Composite, Compos. Interfaces, 2018, 25(8), p 669–679CrossRef M.R. Rezaei, S.G. Shabestari, and S.H. Razavi, Effect of ECAP Consolidation Process on the Interfacial Characteristics of Al-Cu-Ti Metallic Glass Reinforced Aluminum Matrix Composite, Compos. Interfaces, 2018, 25(8), p 669–679CrossRef
39.
go back to reference R. Valiev, I. Alexandrov, Y. Zhu, and T. Lowe, Paradox of Strength and Ductility in Metals Processed Bysevere Plastic Deformation, J. Mater. Res., 2002, 17(1), p 5–8CrossRef R. Valiev, I. Alexandrov, Y. Zhu, and T. Lowe, Paradox of Strength and Ductility in Metals Processed Bysevere Plastic Deformation, J. Mater. Res., 2002, 17(1), p 5–8CrossRef
40.
go back to reference R. Valiev, Nanostructuring of Metals by Severe Plastic Deformation for Advanced Properties, Nat. Mater., 2004, 3(8), p 511–516CrossRef R. Valiev, Nanostructuring of Metals by Severe Plastic Deformation for Advanced Properties, Nat. Mater., 2004, 3(8), p 511–516CrossRef
41.
go back to reference R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater Sci., 2006, 51(7), p 881–981CrossRef R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater Sci., 2006, 51(7), p 881–981CrossRef
42.
go back to reference W.S. Miller and F.J. Humphreys, Strengthening Mechanisms in Particulate Metal Matrix Composites, Scr. Metall. Mater., 1991, 25(1), p 33–38CrossRef W.S. Miller and F.J. Humphreys, Strengthening Mechanisms in Particulate Metal Matrix Composites, Scr. Metall. Mater., 1991, 25(1), p 33–38CrossRef
43.
go back to reference A. Dorri Moghadam, E. Omrani, H. Lopez, L. Zhou, Y. Sohn, and P.K. Rohatgi, Strengthening in Hybrid Alumina-Titanium Diboride Aluminum Matrix Composites Synthesized by Ultrasonic Assisted Reactive Mechanical Mixing, Mater. Sci. Eng. A, 2017, 702, p 312–321CrossRef A. Dorri Moghadam, E. Omrani, H. Lopez, L. Zhou, Y. Sohn, and P.K. Rohatgi, Strengthening in Hybrid Alumina-Titanium Diboride Aluminum Matrix Composites Synthesized by Ultrasonic Assisted Reactive Mechanical Mixing, Mater. Sci. Eng. A, 2017, 702, p 312–321CrossRef
44.
go back to reference F. Ma, J. Zhou, P. Liu, W. Li, X. Liu, D. Pan, W. Lu, D. Zhang, L. Wu, and X. Wei, Strengthening Effects of TiC Particles and Microstructure Refinement in In Situ TiC-Reinforced Ti Matrix Composites, Mater. Charact., 2017, 127, p 27–34CrossRef F. Ma, J. Zhou, P. Liu, W. Li, X. Liu, D. Pan, W. Lu, D. Zhang, L. Wu, and X. Wei, Strengthening Effects of TiC Particles and Microstructure Refinement in In Situ TiC-Reinforced Ti Matrix Composites, Mater. Charact., 2017, 127, p 27–34CrossRef
45.
go back to reference L.C. Davis, C. Andres, and J.E. Allison, Microstructure and Strengthening of Metal Matrix Composites, Mater. Sci. Eng. A, 1998, 249(1), p 40–45CrossRef L.C. Davis, C. Andres, and J.E. Allison, Microstructure and Strengthening of Metal Matrix Composites, Mater. Sci. Eng. A, 1998, 249(1), p 40–45CrossRef
46.
go back to reference M.R. Akbarpour, F.S. Torknik, and S.A. Manafi, Enhanced Compressive Strength of Nanostructured Aluminum Reinforced with SiC Nanoparticles and Investigation of Strengthening Mechanisms and Fracture Behavior, J. Mater. Eng. Perform., 2017, 26(10), p 4902–4909CrossRef M.R. Akbarpour, F.S. Torknik, and S.A. Manafi, Enhanced Compressive Strength of Nanostructured Aluminum Reinforced with SiC Nanoparticles and Investigation of Strengthening Mechanisms and Fracture Behavior, J. Mater. Eng. Perform., 2017, 26(10), p 4902–4909CrossRef
47.
go back to reference N. Hansen, Hall–Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51(8), p 801–806CrossRef N. Hansen, Hall–Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51(8), p 801–806CrossRef
48.
go back to reference N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki, and T. Furuhara, Stress–Strain Behavior of Ferrite and Bainite with Nano-precipitation in Low Carbon Steels, Acta Mater., 2015, 83, p 383–396CrossRef N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki, and T. Furuhara, Stress–Strain Behavior of Ferrite and Bainite with Nano-precipitation in Low Carbon Steels, Acta Mater., 2015, 83, p 383–396CrossRef
49.
go back to reference S. Yoo, S. Han, and W. Kim, Strength and Strain Hardening of Aluminum Matrix Composites with Randomly Dispersed Nanometer-Length Fragmented Carbon Nanotubes, Scr. Mater., 2013, 68(9), p 711–714CrossRef S. Yoo, S. Han, and W. Kim, Strength and Strain Hardening of Aluminum Matrix Composites with Randomly Dispersed Nanometer-Length Fragmented Carbon Nanotubes, Scr. Mater., 2013, 68(9), p 711–714CrossRef
50.
go back to reference S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and V.K. Iyer, Effect of Strengthening Mechanisms on Cold Workability and Instantaneous Strain Hardening Behavior During Grain Refinement of AA 6061-10wt.% TiO2 Composite Prepared by Mechanical Alloying, J. Alloys Compd., 2010, 507(1), p 236–244CrossRef S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and V.K. Iyer, Effect of Strengthening Mechanisms on Cold Workability and Instantaneous Strain Hardening Behavior During Grain Refinement of AA 6061-10wt.% TiO2 Composite Prepared by Mechanical Alloying, J. Alloys Compd., 2010, 507(1), p 236–244CrossRef
51.
go back to reference I. Zuiko and R. Kaibyshev, Deformation Structures and Strengthening Mechanisms in an Al-Cu Alloy Subjected to Extensive Cold Rolling, Mater. Sci. Eng. A, 2017, 702, p 53–64CrossRef I. Zuiko and R. Kaibyshev, Deformation Structures and Strengthening Mechanisms in an Al-Cu Alloy Subjected to Extensive Cold Rolling, Mater. Sci. Eng. A, 2017, 702, p 53–64CrossRef
52.
go back to reference S. Malopheyev and R. Kaibyshev, Strengthening Mechanisms in a Zr-Modified 5083 Alloy Deformed to High Strains, Mater. Sci. Eng. A, 2015, 620, p 246–252CrossRef S. Malopheyev and R. Kaibyshev, Strengthening Mechanisms in a Zr-Modified 5083 Alloy Deformed to High Strains, Mater. Sci. Eng. A, 2015, 620, p 246–252CrossRef
53.
go back to reference S. Malopheyev, V. Kulitskiy, and R. Kaibyshev, Deformation Structures and Strengthening Mechanisms in an Al Mg Sc Zr Alloy, J. Alloys Compd., 2017, 698, p 957–966CrossRef S. Malopheyev, V. Kulitskiy, and R. Kaibyshev, Deformation Structures and Strengthening Mechanisms in an Al Mg Sc Zr Alloy, J. Alloys Compd., 2017, 698, p 957–966CrossRef
54.
go back to reference J. Shen, Y. Li, F. Li, H. Yang, Z. Zhao, S. Kano, Y. Matsukawa, Y. Satoh, and H. Abe, Microstructural Characterization and Strengthening Mechanisms of a 12Cr-ODS Steel, Mater. Sci. Eng. A, 2016, 673, p 624–632CrossRef J. Shen, Y. Li, F. Li, H. Yang, Z. Zhao, S. Kano, Y. Matsukawa, Y. Satoh, and H. Abe, Microstructural Characterization and Strengthening Mechanisms of a 12Cr-ODS Steel, Mater. Sci. Eng. A, 2016, 673, p 624–632CrossRef
Metadata
Title
Investigation on Equal-Channel Angular Pressing-Induced Grain Refinement in an Aluminum Matrix Composite Reinforced with Al-Cu-Ti Metallic Glass Particles
Authors
M. R. Rezaei
S. G. Shabestari
S. H. Razavi
Publication date
30-04-2019
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 5/2019
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04059-2

Other articles of this Issue 5/2019

Journal of Materials Engineering and Performance 5/2019 Go to the issue

Premium Partners