Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2024

20-04-2023 | Technical Article

Investigation on the Diffusion Behaviors and Mechanical Properties of the Ti/Al Interface Using Molecular Dynamics Simulation

Authors: Jiyao Liu, Laiqi Zhang

Published in: Journal of Materials Engineering and Performance | Issue 6/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Many studies have been conducted on the preparation of TiAl alloy sheets through Ti foil and Al foil diffusion. Notably, the problem of Ti/Al interface diffusion needs to be solved both theoretically and experimentally. In this paper, molecular dynamics simulation was used to study the diffusion and mechanical properties of the Ti/Al interface. By analyzing the diffusion of titanium and aluminum atoms at different temperatures, the diffusion coefficient of Al atoms in Ti atoms and that of Ti atoms in Al atoms increased with increasing temperature, thus satisfying the Arrhenius formula at the system temperature. The rough interface pre-filled a portion of the pores during the heating stage, causing the pores at the interface to disappear. Therefore, the diffusion effect of the rough interface was more prominent. The values of the diffusion coefficient and the activation energy of the rough interface were not very different from those of the ideal interface. After diffusion, the tensile simulations showed that the strength was approximately 4.2 GPa. Fractures occurred mainly on the Al side during the tensile deformation process, and the ideal interface and the rough interface had different fracture modes during the tensile fracture process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Mohammadnejad, A. Bahrami, and L.T. Khajavi, Microstructure and Mechanical Properties of Spark Plasma Sintered Nanocrystalline TiAl-xB Composites Containing Carbon Nanotubes, J. Mater. Eng. Perform., 2021, 30, p 4380–4392.CrossRef A. Mohammadnejad, A. Bahrami, and L.T. Khajavi, Microstructure and Mechanical Properties of Spark Plasma Sintered Nanocrystalline TiAl-xB Composites Containing Carbon Nanotubes, J. Mater. Eng. Perform., 2021, 30, p 4380–4392.CrossRef
2.
go back to reference G.V. Krishna Pradeep, M. Duraiselvam, and K. Sivaprasad, Tribological Behavior of Laser Surface Melted γ-TiAl Fabricated by Electron Beam Additive Manufacturing, J. Mater. Eng. Perform., 2022, 31, p 1009–1020.CrossRef G.V. Krishna Pradeep, M. Duraiselvam, and K. Sivaprasad, Tribological Behavior of Laser Surface Melted γ-TiAl Fabricated by Electron Beam Additive Manufacturing, J. Mater. Eng. Perform., 2022, 31, p 1009–1020.CrossRef
3.
go back to reference L. Wang, A.K. Tieu, Q. Zhu, J. Chen, J. Cheng, J. Yang, and B. Kosasih, Achieving the Excellent Self-Lubricity and Low Wear of TiAl Intermetallics Through the Addition of Copper Coated Graphite, Compos. Part. B Eng., 2020, 198, p 108223.CrossRef L. Wang, A.K. Tieu, Q. Zhu, J. Chen, J. Cheng, J. Yang, and B. Kosasih, Achieving the Excellent Self-Lubricity and Low Wear of TiAl Intermetallics Through the Addition of Copper Coated Graphite, Compos. Part. B Eng., 2020, 198, p 108223.CrossRef
4.
go back to reference Y. Tan, Y.L. Wang, X.G. You, H.P. Liu, and P.T. Li, Effect of Solution Heat Treatment on the Microstructure and Hardness of theTi-48Al-2Cr-2Nb Alloy Prepared by Electron Beam Smelting, J. Mater. Eng. Perform., 2021, 31, p 1387–1396.CrossRef Y. Tan, Y.L. Wang, X.G. You, H.P. Liu, and P.T. Li, Effect of Solution Heat Treatment on the Microstructure and Hardness of theTi-48Al-2Cr-2Nb Alloy Prepared by Electron Beam Smelting, J. Mater. Eng. Perform., 2021, 31, p 1387–1396.CrossRef
5.
go back to reference Y. Jiao, L.J. Huang, S.L. Wei, L. Geng, M.F. Qian, and S. Yue, Nano-Ti5Si3 Leading to Enhancement of Oxidation Resistance, Corros. Sci., 2018, 140, p 223–230.CrossRef Y. Jiao, L.J. Huang, S.L. Wei, L. Geng, M.F. Qian, and S. Yue, Nano-Ti5Si3 Leading to Enhancement of Oxidation Resistance, Corros. Sci., 2018, 140, p 223–230.CrossRef
6.
go back to reference O. Ouadah, G. Merad, and H. Si Abdelkader, Atomistic Modelling of the γ-TiAl/α2-Ti3Al Interfacial Properties Affected by Solutes, Mater. Chem. Phys., 2021, 257, p 123434.CrossRef O. Ouadah, G. Merad, and H. Si Abdelkader, Atomistic Modelling of the γ-TiAl/α2-Ti3Al Interfacial Properties Affected by Solutes, Mater. Chem. Phys., 2021, 257, p 123434.CrossRef
7.
go back to reference Y.L. Song, Z.H. Dou, T.A. Zhang, and G.C. Wang, Mechanisms of Metal-Slag Separation Behavior in Thermite Reduction for Preparation of TiAl Alloy, J. Mater. Eng. Perform., 2021, 30, p 9315–9325.CrossRef Y.L. Song, Z.H. Dou, T.A. Zhang, and G.C. Wang, Mechanisms of Metal-Slag Separation Behavior in Thermite Reduction for Preparation of TiAl Alloy, J. Mater. Eng. Perform., 2021, 30, p 9315–9325.CrossRef
8.
go back to reference Z.L. Lu, W.L. Xu, J.W. Cao, Y.L. Xia, Q.H. Deng, and D.C. Li, Microstructures and Properties of porous TiAl-Based Intermetallics Prepared by Freeze-Casting, T. Nonferr. Metal. Soc., 2020, 30, p 328–391.CrossRef Z.L. Lu, W.L. Xu, J.W. Cao, Y.L. Xia, Q.H. Deng, and D.C. Li, Microstructures and Properties of porous TiAl-Based Intermetallics Prepared by Freeze-Casting, T. Nonferr. Metal. Soc., 2020, 30, p 328–391.CrossRef
9.
go back to reference M.Q. Lv, Y.Q. Fu, Z.Y. Yang, H.M. Zhang, and Z.S. Cui, A Two-Stage Constitutive Model for Ti2AlNb Alloy Based on Asymptote Approach and Temperature-Corrected Stress, J. Mater. Eng. Perform., 2021, 30, p 1957–1969.CrossRef M.Q. Lv, Y.Q. Fu, Z.Y. Yang, H.M. Zhang, and Z.S. Cui, A Two-Stage Constitutive Model for Ti2AlNb Alloy Based on Asymptote Approach and Temperature-Corrected Stress, J. Mater. Eng. Perform., 2021, 30, p 1957–1969.CrossRef
10.
go back to reference O. Ouadah, G. Merad, F. Saidi, S. Mendi, and M. Dergal, Influence of Alloying Transition Metals on Structural, Elastic, Electronic and Optical Behaviors of γ-TiAl Based Alloys: A Comparative DFT Study Combined with Data Mining Technique, Mater. Chem. Phys., 2020, 242, p 122455.CrossRef O. Ouadah, G. Merad, F. Saidi, S. Mendi, and M. Dergal, Influence of Alloying Transition Metals on Structural, Elastic, Electronic and Optical Behaviors of γ-TiAl Based Alloys: A Comparative DFT Study Combined with Data Mining Technique, Mater. Chem. Phys., 2020, 242, p 122455.CrossRef
11.
go back to reference K. Yang, X. Shi, Y. Huang, Z. Wang, Y. Wang, A. Zhang, and Q. Zhang, The Research on the Sliding Friction and Wear Behaviors of TiAl-10 wt.%Ag at Elevated Temperatures, Mater. Chem. Phys., 2017, 186, p 317–326.CrossRef K. Yang, X. Shi, Y. Huang, Z. Wang, Y. Wang, A. Zhang, and Q. Zhang, The Research on the Sliding Friction and Wear Behaviors of TiAl-10 wt.%Ag at Elevated Temperatures, Mater. Chem. Phys., 2017, 186, p 317–326.CrossRef
12.
go back to reference S. Bolz, M. Oehring, J. Lindemann, F. Pyczak, J. Paul, A. Stark, T. Lippmann, S. Schrüfer, D. Roth-Fagaraseanu, A. Schreyer, and S. Weiß, Microstructure and Mechanical Properties of a Forged β-Solidifying γ-TiAl Alloy in Different Heat Treatment Conditions, Intermetallics, 2015, 58, p 71–83.CrossRef S. Bolz, M. Oehring, J. Lindemann, F. Pyczak, J. Paul, A. Stark, T. Lippmann, S. Schrüfer, D. Roth-Fagaraseanu, A. Schreyer, and S. Weiß, Microstructure and Mechanical Properties of a Forged β-Solidifying γ-TiAl Alloy in Different Heat Treatment Conditions, Intermetallics, 2015, 58, p 71–83.CrossRef
13.
go back to reference Y. Zhang, X. Wang, F. Kong, L. Sun, and Y. Chen, A high-Performance β-Solidifying TiAl Alloy Sheet: Multi-Type Lamellar Microstructure and Phase Transformation, Mater. Charact., 2018, 138, p 136–144.CrossRef Y. Zhang, X. Wang, F. Kong, L. Sun, and Y. Chen, A high-Performance β-Solidifying TiAl Alloy Sheet: Multi-Type Lamellar Microstructure and Phase Transformation, Mater. Charact., 2018, 138, p 136–144.CrossRef
14.
go back to reference H. Fukutomi, M. Ueno, M. Nakamura, T. Suzuki, and S. Kikuchi, Production of TiAl Sheet with Oriented Lamellar Microstructure by Diffusional Reaciton of Aluminum and Textured Titanium Foils, Mater. T. JIM., 1999, 40, p 654–658.CrossRef H. Fukutomi, M. Ueno, M. Nakamura, T. Suzuki, and S. Kikuchi, Production of TiAl Sheet with Oriented Lamellar Microstructure by Diffusional Reaciton of Aluminum and Textured Titanium Foils, Mater. T. JIM., 1999, 40, p 654–658.CrossRef
15.
go back to reference D.J. Harach, Processing, Properties, and Ballistic Performance of Titanium-Aluminum Titanium Metal-Intermetallic Laminate (MIL) Composite, PhD Thesis, University of California, 2020 D.J. Harach, Processing, Properties, and Ballistic Performance of Titanium-Aluminum Titanium Metal-Intermetallic Laminate (MIL) Composite, PhD Thesis, University of California, 2020
16.
go back to reference J.G. Luo and L. Acoff Viola, Using Cold Roll Bonding and Annealing to Process Ti/Al Multilayer Composites from Elemental Foils, Mat. Sci. Eng. A Struct., 2004, 379, p 164–172.CrossRef J.G. Luo and L. Acoff Viola, Using Cold Roll Bonding and Annealing to Process Ti/Al Multilayer Composites from Elemental Foils, Mat. Sci. Eng. A Struct., 2004, 379, p 164–172.CrossRef
17.
go back to reference Y.B. Sun, Y.Q. Zhao, D. Zhang, C.Y. Liu, and H.Y. Diao, Multilayered Ti-Al Intermetallic Sheets Fabricated by Cold Rolling and Annealing of Titanium and Aluminum Foils, T. Nonferr. Metal. Soc., 2011, 21, p 1722–1727.CrossRef Y.B. Sun, Y.Q. Zhao, D. Zhang, C.Y. Liu, and H.Y. Diao, Multilayered Ti-Al Intermetallic Sheets Fabricated by Cold Rolling and Annealing of Titanium and Aluminum Foils, T. Nonferr. Metal. Soc., 2011, 21, p 1722–1727.CrossRef
18.
go back to reference J.C. Rawers, and H.E. Maupin, Metal-Intermetallic Composites Formed by Reaction-Sintering Metal Foils, J. Mater. Sci. Lett., 1993, 12, p 637–639.CrossRef J.C. Rawers, and H.E. Maupin, Metal-Intermetallic Composites Formed by Reaction-Sintering Metal Foils, J. Mater. Sci. Lett., 1993, 12, p 637–639.CrossRef
19.
go back to reference Y. Huang, L. Lin, and A. Shanker, Molecular Dynamics Simulation of Diffusion Behavior at the Interface of Hot Rolling-Diffusion Bonding of Cu/Al, Heat Treat. Technol. Equip., 2011, 32, p 55–60. Y. Huang, L. Lin, and A. Shanker, Molecular Dynamics Simulation of Diffusion Behavior at the Interface of Hot Rolling-Diffusion Bonding of Cu/Al, Heat Treat. Technol. Equip., 2011, 32, p 55–60.
20.
go back to reference M. Shimono and H. Onodera, Molecular Dynamics Study on Formation and Crystallization of Ti-Al Amorphous Alloys, Mat. Sci. Eng. A Struct., 2001, 304–306, p 515–519.CrossRef M. Shimono and H. Onodera, Molecular Dynamics Study on Formation and Crystallization of Ti-Al Amorphous Alloys, Mat. Sci. Eng. A Struct., 2001, 304–306, p 515–519.CrossRef
21.
go back to reference S.L. Semiatin, S.L. Knisley, P.N. Fagin, D.R. Barker, and F. Zhang, Microstructure Evolution During Alpha-Beta Heat Treatment of Ti-6Al-4V, Metall. Mater. Trans. A., 2003, 34, p 2377–2386.CrossRef S.L. Semiatin, S.L. Knisley, P.N. Fagin, D.R. Barker, and F. Zhang, Microstructure Evolution During Alpha-Beta Heat Treatment of Ti-6Al-4V, Metall. Mater. Trans. A., 2003, 34, p 2377–2386.CrossRef
22.
go back to reference T.D. Nguyen and S.J. Plimpton, Accelerating Dissipative Particle Dynamics Simulations for Soft Matter Systems, Comp. Mater. Sci., 2015, 100, p 173–180.CrossRef T.D. Nguyen and S.J. Plimpton, Accelerating Dissipative Particle Dynamics Simulations for Soft Matter Systems, Comp. Mater. Sci., 2015, 100, p 173–180.CrossRef
23.
go back to reference W. Li, W. Yu, Q. Xu, J. Zhou, H. Nan, Y. Yin, X. Feng, and X. Shen, Effects of γ/γ Interfaces in TiAl Lamellae Subjected to Uniaxial Tensile Loading, Comp. Mater. Sci., 2020, 172, p 109361.CrossRef W. Li, W. Yu, Q. Xu, J. Zhou, H. Nan, Y. Yin, X. Feng, and X. Shen, Effects of γ/γ Interfaces in TiAl Lamellae Subjected to Uniaxial Tensile Loading, Comp. Mater. Sci., 2020, 172, p 109361.CrossRef
24.
go back to reference M. Gerboth, W. Setyawan, and C.H. Henager Jr., Displacement Threshold Energy and Recovery in an Al-Ti Nanolayered System with Intrinsic Point Defect Partitioning, Comp. Mater. Sci., 2014, 85, p 269–279.CrossRef M. Gerboth, W. Setyawan, and C.H. Henager Jr., Displacement Threshold Energy and Recovery in an Al-Ti Nanolayered System with Intrinsic Point Defect Partitioning, Comp. Mater. Sci., 2014, 85, p 269–279.CrossRef
25.
go back to reference R.R. Zope and Y. Mishin, Interatomic Potentials for Atomistic Simulations of the Ti-Al System, Phys. Rev. B, 2003, 68, p 024102.CrossRef R.R. Zope and Y. Mishin, Interatomic Potentials for Atomistic Simulations of the Ti-Al System, Phys. Rev. B, 2003, 68, p 024102.CrossRef
26.
go back to reference Y.K. Kim, H.K. Kim, W.S. Jung, and B.J. Lee, Atomistic Modeling of the Ti-Al Binary System, Comp. Mater. Sci., 2016, 119, p 1–8.CrossRef Y.K. Kim, H.K. Kim, W.S. Jung, and B.J. Lee, Atomistic Modeling of the Ti-Al Binary System, Comp. Mater. Sci., 2016, 119, p 1–8.CrossRef
27.
go back to reference M.S. Daw and M.I. Baskes, Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals, Phys. Rev. B, 1984, 29, p 6443–6453.CrossRef M.S. Daw and M.I. Baskes, Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals, Phys. Rev. B, 1984, 29, p 6443–6453.CrossRef
28.
go back to reference S.D. Chen, F.J. Ke, M. Zhou, and Y.L. Bai, Atomistic Investigation of the Effects of Temperature and Surface Roughness on Diffusion Bonding Between Cu and Al, Acta. Mater., 2007, 55, p 3169–3175.CrossRef S.D. Chen, F.J. Ke, M. Zhou, and Y.L. Bai, Atomistic Investigation of the Effects of Temperature and Surface Roughness on Diffusion Bonding Between Cu and Al, Acta. Mater., 2007, 55, p 3169–3175.CrossRef
29.
go back to reference F.L. Tang, Z. Jun, H.W. Bao et al., MolecuIar Dynamic Simulation of Diffusive Bonding Between Ti-Al and Welded Joint Tensile Performance, J. Lanzhou Univ. Technol., 2015, 41, p 1–6. F.L. Tang, Z. Jun, H.W. Bao et al., MolecuIar Dynamic Simulation of Diffusive Bonding Between Ti-Al and Welded Joint Tensile Performance, J. Lanzhou Univ. Technol., 2015, 41, p 1–6.
30.
go back to reference A.S. Zuruzi, H. Li, and G. Dong, Effects of Surface Roughness on the Diffusion Bonding of Al Alloy 6061 in Air, Mat. Sci. Eng. A Struct., 1999, 270, p 244–248.CrossRef A.S. Zuruzi, H. Li, and G. Dong, Effects of Surface Roughness on the Diffusion Bonding of Al Alloy 6061 in Air, Mat. Sci. Eng. A Struct., 1999, 270, p 244–248.CrossRef
31.
go back to reference G. Ciccotti, M. Guillopé, and V. Pontikis, High-Angle Grain-Boundary Premelting Transition: A Molecular-Dynamics Study, Phys. Rev. B, 1983, 27, p 5576–5558.CrossRef G. Ciccotti, M. Guillopé, and V. Pontikis, High-Angle Grain-Boundary Premelting Transition: A Molecular-Dynamics Study, Phys. Rev. B, 1983, 27, p 5576–5558.CrossRef
32.
go back to reference A.H. Assari and B. Eghbali, Solid State Diffusion Bonding Characteristics at the Interfaces of Ti and Al Layers, J. Alloy. Compd., 2019, 773, p 50–58.CrossRef A.H. Assari and B. Eghbali, Solid State Diffusion Bonding Characteristics at the Interfaces of Ti and Al Layers, J. Alloy. Compd., 2019, 773, p 50–58.CrossRef
33.
go back to reference A. Mao, J. Zhang, S. Yao, A. Wang, W. Wang, Y. Li, C. Qiao, J. Xie, and Y. Jia, The Diffusion Behaviors at the Cu-Al Solid-Liquid Interface: A Molecular Dynamics Study, Results Phys., 2020, 16, p 102998.CrossRef A. Mao, J. Zhang, S. Yao, A. Wang, W. Wang, Y. Li, C. Qiao, J. Xie, and Y. Jia, The Diffusion Behaviors at the Cu-Al Solid-Liquid Interface: A Molecular Dynamics Study, Results Phys., 2020, 16, p 102998.CrossRef
34.
go back to reference D. Raabe, Computational Materials Science, Chemical Industry Press, Beijing, 2002. D. Raabe, Computational Materials Science, Chemical Industry Press, Beijing, 2002.
35.
go back to reference P.G. Shewmion, Diffusion in Solids, McGraw-Hill, New York, 1963. P.G. Shewmion, Diffusion in Solids, McGraw-Hill, New York, 1963.
36.
go back to reference P. Li, L.S. Wang, S.L. Yan, M. Meng, and K.M. Xue, Temperature Effect on the Diffusion Welding Process and Mechanism of B2-O Interface in the Ti2AlNb-Based Alloy: A Molecular Dynamics Simulation, Vacuum, 2020, 173, p 109118.CrossRef P. Li, L.S. Wang, S.L. Yan, M. Meng, and K.M. Xue, Temperature Effect on the Diffusion Welding Process and Mechanism of B2-O Interface in the Ti2AlNb-Based Alloy: A Molecular Dynamics Simulation, Vacuum, 2020, 173, p 109118.CrossRef
37.
go back to reference S.G. Wang, C.X. Liu, and Z.Y. Jian, Molecular Dynamics Simulation of Diffusion Coefficient of Al-Cu Alloy, J. Xi’an Technol. Univ., 2018, 38, p 559–564. S.G. Wang, C.X. Liu, and Z.Y. Jian, Molecular Dynamics Simulation of Diffusion Coefficient of Al-Cu Alloy, J. Xi’an Technol. Univ., 2018, 38, p 559–564.
38.
go back to reference A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO-the Open Visualization Tool, Model. Simul. Mater. Sc., 2010, 18, p 2154–2162.CrossRef A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO-the Open Visualization Tool, Model. Simul. Mater. Sc., 2010, 18, p 2154–2162.CrossRef
Metadata
Title
Investigation on the Diffusion Behaviors and Mechanical Properties of the Ti/Al Interface Using Molecular Dynamics Simulation
Authors
Jiyao Liu
Laiqi Zhang
Publication date
20-04-2023
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2024
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08173-0

Other articles of this Issue 6/2024

Journal of Materials Engineering and Performance 6/2024 Go to the issue

Premium Partners