Skip to main content
Top
Published in: Journal of Engineering Mathematics 1/2017

17-10-2016

Inviscid and low-viscosity flows in multi-branching and reconnecting networks

Published in: Journal of Engineering Mathematics | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We study unsteady flow problems of inviscid and low-viscosity fluids in multi-branching networks, reconnecting networks and large networks. The outer end pressures are assumed. Systematic solutions for fast flow are based on overall features of vessel shapes, lengths and end-pressure distribution. This is for rigid or elastic vessels. Favourable end-pressure gradients combined with constricting vessels lead to steady states or forced oscillations. Other conditions, however, can produce high internal transient pressures and flow surges even when the end conditions remain mild. For a small or large network a single non-linear evolution equation is derived under the additional assumption of nearly equal vessel flows; this admits the influence of all the end pressures as well as the overall features of the vessels and determines the flow through the whole network.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Mazzeo MD, Coveney PV (2008) HemeLB: A high performance parallel lattice-Boltzmann code for large scale fluid low in complex geometries. Comput Phys Commun 178(12):894–914ADSCrossRefMATH Mazzeo MD, Coveney PV (2008) HemeLB: A high performance parallel lattice-Boltzmann code for large scale fluid low in complex geometries. Comput Phys Commun 178(12):894–914ADSCrossRefMATH
2.
go back to reference Secomb TW, Pries AR (2007) Basic principles of hemodynamics. In: Baskurt OK, Hardeman MW, Meiselman HJ (eds) Handbook of hemorheology and hemodynamics. IOS Press, Amsterdam Secomb TW, Pries AR (2007) Basic principles of hemodynamics. In: Baskurt OK, Hardeman MW, Meiselman HJ (eds) Handbook of hemorheology and hemodynamics. IOS Press, Amsterdam
5.
go back to reference McEvoy AW, Kitchen ND, Thomas DGT (2000) Intracerebral haemorrhage in young adults: the emergence of drug misuse. Br Med J 1320:1322–1324CrossRef McEvoy AW, Kitchen ND, Thomas DGT (2000) Intracerebral haemorrhage in young adults: the emergence of drug misuse. Br Med J 1320:1322–1324CrossRef
6.
go back to reference Olufsen MS, Peskin CS, Kim WY, Pedersen EM, Nadim A, Larsen J (2000) Numerical simulation and experimental validation of blood flow in arteries with structured tree outflow conditions. Ann Biomed Eng 28:1281–1299CrossRef Olufsen MS, Peskin CS, Kim WY, Pedersen EM, Nadim A, Larsen J (2000) Numerical simulation and experimental validation of blood flow in arteries with structured tree outflow conditions. Ann Biomed Eng 28:1281–1299CrossRef
8.
go back to reference van de Vosse FN, de Hart J, van Oijen CHGA, Bessems D, Segal A, Wolters BJBM, Stijnen JMA, Baaijens FPT (2003) Finite-element-based computational methods for cardiovascular fluid-structure interaction. J Eng Math 47:335–368MathSciNetCrossRefMATH van de Vosse FN, de Hart J, van Oijen CHGA, Bessems D, Segal A, Wolters BJBM, Stijnen JMA, Baaijens FPT (2003) Finite-element-based computational methods for cardiovascular fluid-structure interaction. J Eng Math 47:335–368MathSciNetCrossRefMATH
9.
go back to reference Passerini T, de Luca M, Formaggia L, Quarteroni A, Veneziani A (2009) A 3D/1D geometrical multiscale model of cerebral vasculature. J Eng Math 64(4):391MathSciNetCrossRefMATH Passerini T, de Luca M, Formaggia L, Quarteroni A, Veneziani A (2009) A 3D/1D geometrical multiscale model of cerebral vasculature. J Eng Math 64(4):391MathSciNetCrossRefMATH
10.
go back to reference Bernabeau MO, Nash RW, Groen D, Carver HB, Hetherington J, Kruger T, Coveney PV (2012) Impact of blood rheology on wall shear stress in a model of the middle cerebral artery. Interface Focus 3(2):20120094CrossRef Bernabeau MO, Nash RW, Groen D, Carver HB, Hetherington J, Kruger T, Coveney PV (2012) Impact of blood rheology on wall shear stress in a model of the middle cerebral artery. Interface Focus 3(2):20120094CrossRef
11.
go back to reference Pries AR, Secomb TW (2008) Modelling structural adaptation of microcirculation. Microcirculation 15(8):753–764CrossRef Pries AR, Secomb TW (2008) Modelling structural adaptation of microcirculation. Microcirculation 15(8):753–764CrossRef
13.
go back to reference August AD, Ariff B, Thom SM, Xu XY, Hughes AD (2007) Analysis of complex flow and the relationship between blood pressure, wall shear stress, and intimamedia thickness in the human carotid artery. Am J Physiol 293(2):H1031-7 August AD, Ariff B, Thom SM, Xu XY, Hughes AD (2007) Analysis of complex flow and the relationship between blood pressure, wall shear stress, and intimamedia thickness in the human carotid artery. Am J Physiol 293(2):H1031-7
14.
go back to reference Pranevicius O, Pranevicius M, Liebeskind DS (2011) Partial aortic occlusion and cerebral venous steal. Stroke 42(5):1478–1481CrossRef Pranevicius O, Pranevicius M, Liebeskind DS (2011) Partial aortic occlusion and cerebral venous steal. Stroke 42(5):1478–1481CrossRef
15.
go back to reference Smith FT, Jones MA (2003) AVM modelling by multi-branching tube flow: large flow rates and dual solutions. Math Med Biol 20:183–204CrossRefMATH Smith FT, Jones MA (2003) AVM modelling by multi-branching tube flow: large flow rates and dual solutions. Math Med Biol 20:183–204CrossRefMATH
16.
17.
go back to reference Bowles RI, Dennis SCR, Purvis R, Smith FT (2005) Multi-branching flows from one mother tube to many daughters or to a network. Philos Trans R Soc A 363:1045–1055ADSMathSciNetCrossRefMATH Bowles RI, Dennis SCR, Purvis R, Smith FT (2005) Multi-branching flows from one mother tube to many daughters or to a network. Philos Trans R Soc A 363:1045–1055ADSMathSciNetCrossRefMATH
18.
19.
20.
go back to reference Abramowitz M, Stegun IA (eds) (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th printing. Dover, New York Abramowitz M, Stegun IA (eds) (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th printing. Dover, New York
Metadata
Title
Inviscid and low-viscosity flows in multi-branching and reconnecting networks
Publication date
17-10-2016
Published in
Journal of Engineering Mathematics / Issue 1/2017
Print ISSN: 0022-0833
Electronic ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-016-9869-3

Other articles of this Issue 1/2017

Journal of Engineering Mathematics 1/2017 Go to the issue

Premium Partners