Skip to main content
Top

2020 | OriginalPaper | Chapter

Ionic Liquids Based Processing of Renewable and Sustainable Biopolymers

Authors : Sadia Naz, Maliha Uroos

Published in: Biofibers and Biopolymers for Biocomposites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In view of immense potential of sustainable and renewable biopolymers for future biorefineries, development of green and carbon economic methods for their processing are highly demanding. Despite of numerous protocols established so far, innovations leading to sustainable methods for integration of multi-step volarization of low value biopolymeric feedstock are still highly concerned. One of such innovations is the ionic liquids based biorefinery concept for various advanced biofuels, valuable chemicals and other bio-products. Superiority of ionic liquids is due to their green, non-degradative, non-toxic, nono-volatile and chemically and thermally stable profile for upgrading renewable biopolymers based biorefinery. Some processing applications of ionic liquids for biofuels and fine chemicals production are covered in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alvira, P., Tomas-Pejo, E., Ballesteros, M. J., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology,101, 4851–4861.CrossRef Alvira, P., Tomas-Pejo, E., Ballesteros, M. J., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology,101, 4851–4861.CrossRef
2.
go back to reference Moyer, P., Smith, M. D., Abdoulmoumine, N., Chmely, S. C., Smith, J. C., Petridis, L., et al. (2018). Relationship between lignocellulosic biomass dissolution and physicochemical properties of ionic liquids composed of 3-methylimidazolium cations and carboxylate anions. Physical Chemistry Chemical Physics,20, 2508–2516.CrossRef Moyer, P., Smith, M. D., Abdoulmoumine, N., Chmely, S. C., Smith, J. C., Petridis, L., et al. (2018). Relationship between lignocellulosic biomass dissolution and physicochemical properties of ionic liquids composed of 3-methylimidazolium cations and carboxylate anions. Physical Chemistry Chemical Physics,20, 2508–2516.CrossRef
3.
go back to reference Saha, B. C., & Cotta, M. A. (2006). Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnology Progress,22, 449–453.CrossRef Saha, B. C., & Cotta, M. A. (2006). Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnology Progress,22, 449–453.CrossRef
4.
go back to reference Brandt, A., Grasvik, J., Hallett, J. P., & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry,15, 550–583.CrossRef Brandt, A., Grasvik, J., Hallett, J. P., & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry,15, 550–583.CrossRef
5.
go back to reference Karimi, K., Kheradmandinia, S., & Taherzadeh, M. J. (2006). Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass and Bioenergy,30, 247–253.CrossRef Karimi, K., Kheradmandinia, S., & Taherzadeh, M. J. (2006). Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass and Bioenergy,30, 247–253.CrossRef
6.
go back to reference Georgieva, T. I., Mikkelsen, M. J., & Ahring, B. K. (2008). Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Applied Biochemistry and Biotechnology,145, 99–110.CrossRef Georgieva, T. I., Mikkelsen, M. J., & Ahring, B. K. (2008). Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Applied Biochemistry and Biotechnology,145, 99–110.CrossRef
7.
go back to reference O’sullivan, A.C. (1997). Cellulose: The structure slowly unravels. Cellulose, 4, 173–207.CrossRef O’sullivan, A.C. (1997). Cellulose: The structure slowly unravels. Cellulose, 4, 173–207.CrossRef
8.
go back to reference Nishiyama, Y., Langan, P., & Chanzy, H. (2002). Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society,124, 9074–9082.CrossRef Nishiyama, Y., Langan, P., & Chanzy, H. (2002). Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society,124, 9074–9082.CrossRef
9.
go back to reference Qian, X., Ding, S.-Y., Nimlos, M. R., Johnson, D. K., & Himmel, M. E. (2005). Atomic and electronic structures of molecular crystalline cellulose Iβ: a first-principles investigation. Macromolecules,38, 10580–10589.CrossRef Qian, X., Ding, S.-Y., Nimlos, M. R., Johnson, D. K., & Himmel, M. E. (2005). Atomic and electronic structures of molecular crystalline cellulose Iβ: a first-principles investigation. Macromolecules,38, 10580–10589.CrossRef
10.
go back to reference Jimenez de la Parra, C., Navarrete, A., Dolores Bermejo, M., & Jose Cocero, M. (2012). Patents review on lignocellulosic biomass processing using ionic liquids. Recent Patents on Engineering,6, 159–181.CrossRef Jimenez de la Parra, C., Navarrete, A., Dolores Bermejo, M., & Jose Cocero, M. (2012). Patents review on lignocellulosic biomass processing using ionic liquids. Recent Patents on Engineering,6, 159–181.CrossRef
11.
go back to reference Timell, T. E. (1967). Recent progress in the chemistry of wood hemicelluloses. Wood Science and Technology,1, 45–70.CrossRef Timell, T. E. (1967). Recent progress in the chemistry of wood hemicelluloses. Wood Science and Technology,1, 45–70.CrossRef
12.
go back to reference Willfor, S., Sundberg, K., Tenkanen, M., & Holmbom, B. (2008). Spruce-derived mannans–A potential raw material for hydrocolloids and novel advanced natural materials. Carbohydrate Polymers,72, 197–210.CrossRef Willfor, S., Sundberg, K., Tenkanen, M., & Holmbom, B. (2008). Spruce-derived mannans–A potential raw material for hydrocolloids and novel advanced natural materials. Carbohydrate Polymers,72, 197–210.CrossRef
13.
go back to reference Erdei, B., Barta, Z., Sipos, B., Reczey, K., Galbe, M., & Zacchi, G. (2010). Ethanol production from mixtures of wheat straw and wheat meal. Biotechnology for Biofuels,3, 16.CrossRef Erdei, B., Barta, Z., Sipos, B., Reczey, K., Galbe, M., & Zacchi, G. (2010). Ethanol production from mixtures of wheat straw and wheat meal. Biotechnology for Biofuels,3, 16.CrossRef
14.
go back to reference Lee, J. (1997). Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology,56, 1–24.CrossRef Lee, J. (1997). Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology,56, 1–24.CrossRef
15.
go back to reference Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin biosynthesis. Annual Review of Plant Biology,54, 519–546.CrossRef Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin biosynthesis. Annual Review of Plant Biology,54, 519–546.CrossRef
16.
go back to reference El Hage, R., Brosse, N., Chrusciel, L., Sanchez, C., Sannigrahi, P., & Ragauskas, A. (2009). Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polymer Degradation and Stability,94, 1632–1638.CrossRef El Hage, R., Brosse, N., Chrusciel, L., Sanchez, C., Sannigrahi, P., & Ragauskas, A. (2009). Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polymer Degradation and Stability,94, 1632–1638.CrossRef
17.
go back to reference Klamt, A. (1995). Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. The Journal of Physical Chemistry,99, 2224–2235.CrossRef Klamt, A. (1995). Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. The Journal of Physical Chemistry,99, 2224–2235.CrossRef
18.
go back to reference Spange, S., Keutel, D., & Simon, F. (1992). Approaches to empirical donor-acceptor and polarity-parameters of polymers in solution and at interfaces. Journal de Chimie Physique,89, 1615–1622.CrossRef Spange, S., Keutel, D., & Simon, F. (1992). Approaches to empirical donor-acceptor and polarity-parameters of polymers in solution and at interfaces. Journal de Chimie Physique,89, 1615–1622.CrossRef
19.
go back to reference Ogura, K., Ninomiya, K., Takahashi, K., Ogino, C., & Kondo, A. (2014). Pretreatment of Japanese cedar by ionic liquid solutions in combination with acid and metal ion and its application to high solid loading. Biotechnology for Biofuels,7, 120.CrossRef Ogura, K., Ninomiya, K., Takahashi, K., Ogino, C., & Kondo, A. (2014). Pretreatment of Japanese cedar by ionic liquid solutions in combination with acid and metal ion and its application to high solid loading. Biotechnology for Biofuels,7, 120.CrossRef
20.
go back to reference Swatloski, R. P., Spear, S. K., Holbrey, J. D., & Rogers, R. D. (2002). Dissolution of cellulose with ionic liquids. Journal of the American Chemical Society,124, 4974–4975.CrossRef Swatloski, R. P., Spear, S. K., Holbrey, J. D., & Rogers, R. D. (2002). Dissolution of cellulose with ionic liquids. Journal of the American Chemical Society,124, 4974–4975.CrossRef
21.
go back to reference Fort, D. A., Remsing, R. C., Swatloski, R. P., Moyna, P., Moyna, G., & Rogers, R. D. (2007). Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chemistry,9, 63–69.CrossRef Fort, D. A., Remsing, R. C., Swatloski, R. P., Moyna, P., Moyna, G., & Rogers, R. D. (2007). Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chemistry,9, 63–69.CrossRef
22.
go back to reference Vitz, J., Erdmenger, T., Haensch, C., & Schubert, U. S. (2009). Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chemistry,11, 417–424.CrossRef Vitz, J., Erdmenger, T., Haensch, C., & Schubert, U. S. (2009). Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chemistry,11, 417–424.CrossRef
23.
go back to reference Zhao, H., Baker, G. A., Song, Z., Olubajo, O., Crittle, T., & Peters, D. (2008). Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chemistry,10, 696–705.CrossRef Zhao, H., Baker, G. A., Song, Z., Olubajo, O., Crittle, T., & Peters, D. (2008). Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chemistry,10, 696–705.CrossRef
24.
go back to reference Khan, A. S., Nasrullah, A., Ullah, Z., Bhat, A. H., Ghanem, O. B., Muhammad, N., et al. (2018). Thermophysical properties and ecotoxicity of new nitrile functionalised protic ionic liquids. Journal of Molecular Liquids,249, 583–590.CrossRef Khan, A. S., Nasrullah, A., Ullah, Z., Bhat, A. H., Ghanem, O. B., Muhammad, N., et al. (2018). Thermophysical properties and ecotoxicity of new nitrile functionalised protic ionic liquids. Journal of Molecular Liquids,249, 583–590.CrossRef
25.
go back to reference Zakzeski, J., Bruijnincx, P. C., Jongerius, A. L., & Weckhuysen, B. M. (2010). The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews,110, 3552–3599.CrossRef Zakzeski, J., Bruijnincx, P. C., Jongerius, A. L., & Weckhuysen, B. M. (2010). The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews,110, 3552–3599.CrossRef
26.
go back to reference Lee, S. H., Doherty, T. V., Linhardt, R. J., & Dordick, J. S. (2009). Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnology and bioengineering,102, 1368–1376.CrossRef Lee, S. H., Doherty, T. V., Linhardt, R. J., & Dordick, J. S. (2009). Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnology and bioengineering,102, 1368–1376.CrossRef
27.
go back to reference Pu, Y., Jiang, N., & Ragauskas, A. J. (2007). Ionic liquid as a green solvent for lignin. Journal of Wood Chemistry and Technology,27, 23–33.CrossRef Pu, Y., Jiang, N., & Ragauskas, A. J. (2007). Ionic liquid as a green solvent for lignin. Journal of Wood Chemistry and Technology,27, 23–33.CrossRef
28.
go back to reference Ji, W., Ding, Z., Liu, J., Song, Q., Xia, X., Gao, H., et al. (2012). Mechanism of lignin dissolution and regeneration in ionic liquid. Energy & Fuels,26, 6393–6403.CrossRef Ji, W., Ding, Z., Liu, J., Song, Q., Xia, X., Gao, H., et al. (2012). Mechanism of lignin dissolution and regeneration in ionic liquid. Energy & Fuels,26, 6393–6403.CrossRef
29.
go back to reference Brandt, A., Ray, M. J., To, T. Q., Leak, D. J., Murphy, R. J., & Welton, T. (2011). Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chemistry,13, 2489–2499.CrossRef Brandt, A., Ray, M. J., To, T. Q., Leak, D. J., Murphy, R. J., & Welton, T. (2011). Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chemistry,13, 2489–2499.CrossRef
30.
go back to reference Eminov, S., Filippousi, P., Brandt, A., Wilton-Ely, J. D., & Hallett, J. P. (2016). Direct catalytic conversion of cellulose to 5-hydroxymethylfurfural using ionic liquids. Inorganics,4, 32–47.CrossRef Eminov, S., Filippousi, P., Brandt, A., Wilton-Ely, J. D., & Hallett, J. P. (2016). Direct catalytic conversion of cellulose to 5-hydroxymethylfurfural using ionic liquids. Inorganics,4, 32–47.CrossRef
31.
go back to reference Werpy, T., Petersen, G., Aden, A., Bozell, J., Holladay, J., White, J., et al. (2004). Top value added chemicals from biomass. Volume 1-Results of screening for potential candidates from sugars and synthesis gas. Washington DC: Department of Energy. Werpy, T., Petersen, G., Aden, A., Bozell, J., Holladay, J., White, J., et al. (2004). Top value added chemicals from biomass. Volume 1-Results of screening for potential candidates from sugars and synthesis gas. Washington DC: Department of Energy.
32.
go back to reference Tundo, P., Perosa, A., & Zecchini, F. (2007). Methods and reagents for green chemistry. Hoboken: Wiley. Tundo, P., Perosa, A., & Zecchini, F. (2007). Methods and reagents for green chemistry. Hoboken: Wiley.
33.
go back to reference Carole, T.M., Pellegrino, J., & Paster, M.D. (2004). Opportunities in the industrial biobased products industry. In Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003 (pp. 871–885) Breckenridge, CO: Springer. Carole, T.M., Pellegrino, J., & Paster, M.D. (2004). Opportunities in the industrial biobased products industry. In Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003 (pp. 871–885) Breckenridge, CO: Springer.
34.
go back to reference Li, C., & Zhao, Z. K. (2007). Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Advanced Synthesis & Catalysis,349, 1847–1850.CrossRef Li, C., & Zhao, Z. K. (2007). Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Advanced Synthesis & Catalysis,349, 1847–1850.CrossRef
35.
go back to reference Zhao, H., Holladay, J. E., Brown, H., & Zhang, Z. C. (2007). Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science,316, 1597–1600.CrossRef Zhao, H., Holladay, J. E., Brown, H., & Zhang, Z. C. (2007). Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science,316, 1597–1600.CrossRef
36.
go back to reference Muranaka, Y., Suzuki, T., Sawanishi, H., Hasegawa, I., & Mae, K. (2014). Effective production of levulinic acid from biomass through pretreatment using phosphoric acid, hydrochloric acid, or ionic liquid. Industrial & Engineering Chemistry Research,53, 11611–11621.CrossRef Muranaka, Y., Suzuki, T., Sawanishi, H., Hasegawa, I., & Mae, K. (2014). Effective production of levulinic acid from biomass through pretreatment using phosphoric acid, hydrochloric acid, or ionic liquid. Industrial & Engineering Chemistry Research,53, 11611–11621.CrossRef
37.
go back to reference Sievers, C., Musin, I., Marzialetti, T., Valenzuela Olarte, M.B., Agrawal, P.K., & Jones, C.W. (2009). Acid‐catalyzed conversion of sugars and furfurals in an ionic‐liquid phase. ChemSusChem: Chemistry & Sustainability Energy & Materials, 2, 665–671. Sievers, C., Musin, I., Marzialetti, T., Valenzuela Olarte, M.B., Agrawal, P.K., & Jones, C.W. (2009). Acid‐catalyzed conversion of sugars and furfurals in an ionic‐liquid phase. ChemSusChem: Chemistry & Sustainability Energy & Materials, 2, 665–671.
38.
go back to reference Chen, T., Xiong, C., & Tao, Y. (2018). Enhanced hydrolysis of cellulose in ionic liquid using mesoporous ZSM-5. Molecules,23, 529–539.CrossRef Chen, T., Xiong, C., & Tao, Y. (2018). Enhanced hydrolysis of cellulose in ionic liquid using mesoporous ZSM-5. Molecules,23, 529–539.CrossRef
39.
go back to reference Bose, S., Armstrong, D. W., & Petrich, J. W. (2010). Enzyme-catalyzed hydrolysis of cellulose in ionic liquids: A green approach toward the production of biofuels. The Journal of Physical Chemistry B,114, 8221–8227.CrossRef Bose, S., Armstrong, D. W., & Petrich, J. W. (2010). Enzyme-catalyzed hydrolysis of cellulose in ionic liquids: A green approach toward the production of biofuels. The Journal of Physical Chemistry B,114, 8221–8227.CrossRef
40.
go back to reference de Oliveira, H. F. N., Fares, C., & Rinaldi, R. (2015). Beyond a solvent: the roles of 1-butyl-3-methylimidazolium chloride in the acid-catalysis for cellulose depolymerisation. Chemical Science,6, 5215–5224.CrossRef de Oliveira, H. F. N., Fares, C., & Rinaldi, R. (2015). Beyond a solvent: the roles of 1-butyl-3-methylimidazolium chloride in the acid-catalysis for cellulose depolymerisation. Chemical Science,6, 5215–5224.CrossRef
41.
go back to reference Hu, L., Lin, L., Wu, Z., Zhou, S., & Liu, S. (2015). Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. Applied Catalysis B: Environmental,174, 225–243.CrossRef Hu, L., Lin, L., Wu, Z., Zhou, S., & Liu, S. (2015). Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. Applied Catalysis B: Environmental,174, 225–243.CrossRef
42.
go back to reference Qu, Y., Li, L., Wei, Q., Huang, C., Oleskowicz-Popiel, P., & Xu, J. (2016). One-pot conversion of disaccharide into 5-hydroxymethylfurfural catalyzed by imidazole ionic liquid. Scientific Reports,6, 26067.CrossRef Qu, Y., Li, L., Wei, Q., Huang, C., Oleskowicz-Popiel, P., & Xu, J. (2016). One-pot conversion of disaccharide into 5-hydroxymethylfurfural catalyzed by imidazole ionic liquid. Scientific Reports,6, 26067.CrossRef
43.
go back to reference Mukherjee, A., Dumont, M.-J., & Raghavan, V. (2015). Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass and Bioenergy,72, 143–183.CrossRef Mukherjee, A., Dumont, M.-J., & Raghavan, V. (2015). Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass and Bioenergy,72, 143–183.CrossRef
44.
go back to reference Wang, P., Yu, H., Zhan, S., & Wang, S. (2011). Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid. Bioresource Technology,102, 4179–4183.CrossRef Wang, P., Yu, H., Zhan, S., & Wang, S. (2011). Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid. Bioresource Technology,102, 4179–4183.CrossRef
45.
go back to reference Tiong, Y. W., Yap, C. L., Gan, S., & Yap, W. S. P. (2018). Conversion of biomass and its derivatives to levulinic acid and levulinate esters via ionic liquids. Industrial & Engineering Chemistry Research,57, 4749–4766.CrossRef Tiong, Y. W., Yap, C. L., Gan, S., & Yap, W. S. P. (2018). Conversion of biomass and its derivatives to levulinic acid and levulinate esters via ionic liquids. Industrial & Engineering Chemistry Research,57, 4749–4766.CrossRef
46.
go back to reference Chatel, G., & Rogers, R. D. (2013). Oxidation of lignin using ionic liquids—an innovative strategy to produce renewable chemicals. ACS Sustainable Chemistry & Engineering,2, 322–339.CrossRef Chatel, G., & Rogers, R. D. (2013). Oxidation of lignin using ionic liquids—an innovative strategy to produce renewable chemicals. ACS Sustainable Chemistry & Engineering,2, 322–339.CrossRef
47.
go back to reference Rinaldi, R., Jastrzebski, R., Clough, M. T., Ralph, J., Kennema, M., Bruijnincx, P. C., et al. (2016). Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angewandte Chemie International Edition,55, 8164–8215.CrossRef Rinaldi, R., Jastrzebski, R., Clough, M. T., Ralph, J., Kennema, M., Bruijnincx, P. C., et al. (2016). Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angewandte Chemie International Edition,55, 8164–8215.CrossRef
48.
go back to reference Mainka, H., Tager, O., Korner, E., Hilfert, L., Busse, S., Edelmann, F. T., et al. (2015). Lignin–an alternative precursor for sustainable and cost-effective automotive carbon fiber. Journal of Materials Research and Technology,4, 283–296.CrossRef Mainka, H., Tager, O., Korner, E., Hilfert, L., Busse, S., Edelmann, F. T., et al. (2015). Lignin–an alternative precursor for sustainable and cost-effective automotive carbon fiber. Journal of Materials Research and Technology,4, 283–296.CrossRef
49.
go back to reference Kadla, J. F., & Kubo, S. (2004). Lignin-based polymer blends: analysis of intermolecular interactions in lignin–synthetic polymer blends. Composites Part A: Applied Science and Manufacturing,35, 395–400.CrossRef Kadla, J. F., & Kubo, S. (2004). Lignin-based polymer blends: analysis of intermolecular interactions in lignin–synthetic polymer blends. Composites Part A: Applied Science and Manufacturing,35, 395–400.CrossRef
50.
go back to reference Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., et al. (2006). Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. Journal of Biotechnology,125, 198–209.CrossRef Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., et al. (2006). Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. Journal of Biotechnology,125, 198–209.CrossRef
51.
go back to reference Holladay, J.E., Bozell, J.J., White, J.F., Johnson, D. (2007). Top value added chemicals from biomass: results of screening for potential candidate from sugars and synthesis gas, vol. 2. Pacific Northwest National Laboratory: US Department of Energy. Holladay, J.E., Bozell, J.J., White, J.F., Johnson, D. (2007). Top value added chemicals from biomass: results of screening for potential candidate from sugars and synthesis gas, vol. 2. Pacific Northwest National Laboratory: US Department of Energy.
52.
go back to reference Ma, R., Xu, Y., & Zhang, X. (2015). Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. Chemsuschem,8, 24–51.CrossRef Ma, R., Xu, Y., & Zhang, X. (2015). Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. Chemsuschem,8, 24–51.CrossRef
53.
go back to reference Yan, N., Yuan, Y., Dykeman, R., Kou, Y., & Dyson, P. J. (2010). Hydrodeoxygenation of lignin-derived phenols into alkanes by using nanoparticle catalysts combined with bronsted acidic ionic liquids. Angewandte Chemie,122, 5681–5685.CrossRef Yan, N., Yuan, Y., Dykeman, R., Kou, Y., & Dyson, P. J. (2010). Hydrodeoxygenation of lignin-derived phenols into alkanes by using nanoparticle catalysts combined with bronsted acidic ionic liquids. Angewandte Chemie,122, 5681–5685.CrossRef
54.
go back to reference Liu, S., Shi, Z., Li, L., Yu, S., Xie, C., & Song, Z. (2013). Process of lignin oxidation in an ionic liquid coupled with separation. RSC Advances,3, 5789–5793.CrossRef Liu, S., Shi, Z., Li, L., Yu, S., Xie, C., & Song, Z. (2013). Process of lignin oxidation in an ionic liquid coupled with separation. RSC Advances,3, 5789–5793.CrossRef
55.
go back to reference Prado, R., Brandt, A., Erdocia, X., Hallet, J., Welton, T., & Labidi, J. (2016). Lignin oxidation and depolymerisation in ionic liquids. Green Chemistry,18, 834–841.CrossRef Prado, R., Brandt, A., Erdocia, X., Hallet, J., Welton, T., & Labidi, J. (2016). Lignin oxidation and depolymerisation in ionic liquids. Green Chemistry,18, 834–841.CrossRef
56.
go back to reference Scott, M., Deuss, P. J., de Vries, J. G., Prechtl, M. H., & Barta, K. (2016). New insights into the catalytic cleavage of the lignin β-O-4 linkage in multifunctional ionic liquid media. Catalysis Science & Technology,6, 1882–1891.CrossRef Scott, M., Deuss, P. J., de Vries, J. G., Prechtl, M. H., & Barta, K. (2016). New insights into the catalytic cleavage of the lignin β-O-4 linkage in multifunctional ionic liquid media. Catalysis Science & Technology,6, 1882–1891.CrossRef
57.
go back to reference Wiermans, L., Schumacher, H., Klaaßen, C.-M., & de Maria, P. D. (2015). Unprecedented catalyst-free lignin dearomatization with hydrogen peroxide and dimethyl carbonate. RSC Advances,5, 4009–4018.CrossRef Wiermans, L., Schumacher, H., Klaaßen, C.-M., & de Maria, P. D. (2015). Unprecedented catalyst-free lignin dearomatization with hydrogen peroxide and dimethyl carbonate. RSC Advances,5, 4009–4018.CrossRef
58.
go back to reference Prado, R., Erdocia, X., De Gregorio, G. F., Labidi, J., & Welton, T. (2016). Willow lignin oxidation and depolymerization under low cost ionic liquid. ACS Sustainable Chemistry & Engineering,4, 5277–5288.CrossRef Prado, R., Erdocia, X., De Gregorio, G. F., Labidi, J., & Welton, T. (2016). Willow lignin oxidation and depolymerization under low cost ionic liquid. ACS Sustainable Chemistry & Engineering,4, 5277–5288.CrossRef
59.
go back to reference Zakzeski, J., Jongerius, A. L., & Weckhuysen, B. M. (2010). Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green Chemistry,12, 1225–1236.CrossRef Zakzeski, J., Jongerius, A. L., & Weckhuysen, B. M. (2010). Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green Chemistry,12, 1225–1236.CrossRef
60.
go back to reference Das, L., Xu, S., & Shi, J. (2017). Catalytic oxidation and depolymerization of Lignin in Aqueous Ionic Liquid. Frontiers in Energy Research,5, 21.CrossRef Das, L., Xu, S., & Shi, J. (2017). Catalytic oxidation and depolymerization of Lignin in Aqueous Ionic Liquid. Frontiers in Energy Research,5, 21.CrossRef
61.
go back to reference Stark, K., Taccardi, N., Bosmann, A., & Wasserscheid, P. (2010). Oxidative depolymerization of lignin in ionic liquids. Chemsuschem,3, 719–723.CrossRef Stark, K., Taccardi, N., Bosmann, A., & Wasserscheid, P. (2010). Oxidative depolymerization of lignin in ionic liquids. Chemsuschem,3, 719–723.CrossRef
62.
go back to reference Liu, F., Liu, Q., Wang, A., & Zhang, T. (2016). Direct catalytic hydrogenolysis of kraft lignin to phenols in choline-derived ionic liquids. ACS Sustainable Chemistry & Engineering,4, 3850–3856.CrossRef Liu, F., Liu, Q., Wang, A., & Zhang, T. (2016). Direct catalytic hydrogenolysis of kraft lignin to phenols in choline-derived ionic liquids. ACS Sustainable Chemistry & Engineering,4, 3850–3856.CrossRef
63.
go back to reference Lange, H., Decina, S., & Crestini, C. (2013). Oxidative upgrade of lignin–recent routes reviewed. European Polymer Journal,49, 1151–1173.CrossRef Lange, H., Decina, S., & Crestini, C. (2013). Oxidative upgrade of lignin–recent routes reviewed. European Polymer Journal,49, 1151–1173.CrossRef
64.
go back to reference Dier, T. K., Rauber, D., Durneata, D., Hempelmann, R., & Volmer, D. A. (2017). Sustainable electrochemical depolymerization of lignin in reusable ionic liquids. Scientific Reports,7, 5041.CrossRef Dier, T. K., Rauber, D., Durneata, D., Hempelmann, R., & Volmer, D. A. (2017). Sustainable electrochemical depolymerization of lignin in reusable ionic liquids. Scientific Reports,7, 5041.CrossRef
65.
go back to reference Reichert, E., Wintringer, R., Volmer, D. A., & Hempelmann, R. (2012). Electro-catalytic oxidative cleavage of lignin in a protic ionic liquid. Physical Chemistry Chemical Physics,14, 5214–5221.CrossRef Reichert, E., Wintringer, R., Volmer, D. A., & Hempelmann, R. (2012). Electro-catalytic oxidative cleavage of lignin in a protic ionic liquid. Physical Chemistry Chemical Physics,14, 5214–5221.CrossRef
66.
go back to reference Cox, B. J., & Ekerdt, J. G. (2012). Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst. Bioresource Technology,118, 584–588.CrossRef Cox, B. J., & Ekerdt, J. G. (2012). Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst. Bioresource Technology,118, 584–588.CrossRef
67.
go back to reference Thierry, M., Majira, A., Pegot, B., Cezard, L., Bourdreux, F., Clement, G., et al. (2018). Imidazolium-based Ionic Liquids as efficient reagents for the C−O bond cleavage of Lignin. Chemsuschem,11, 439–448.CrossRef Thierry, M., Majira, A., Pegot, B., Cezard, L., Bourdreux, F., Clement, G., et al. (2018). Imidazolium-based Ionic Liquids as efficient reagents for the C−O bond cleavage of Lignin. Chemsuschem,11, 439–448.CrossRef
68.
go back to reference Diop, A., Jradi, K., Daneault, C., & Montplaisir, D. (2015). Kraft lignin depolymerization in an ionic liquid without a catalyst. BioResources,10, 4933–4946.CrossRef Diop, A., Jradi, K., Daneault, C., & Montplaisir, D. (2015). Kraft lignin depolymerization in an ionic liquid without a catalyst. BioResources,10, 4933–4946.CrossRef
69.
go back to reference Liu, C., Li, Y. M., & Hou, Y. (2018). Preparation and structural characterization of lignin micro/nano-particles with ionic liquid treatment by self-assembly. Express Polymer Letters,12, 946–956.CrossRef Liu, C., Li, Y. M., & Hou, Y. (2018). Preparation and structural characterization of lignin micro/nano-particles with ionic liquid treatment by self-assembly. Express Polymer Letters,12, 946–956.CrossRef
70.
go back to reference Szalaty, T. J., Klapiszewski, L., Kurc, B., Skrzypczak, A., & Jesionowski, T. (2018). A comparison of protic and aprotic ionic liquids as effective activating agents of kraft lignin. Developing functional MnO2/lignin hybrid materials. Journal of Molecular Liquids,261, 456–467.CrossRef Szalaty, T. J., Klapiszewski, L., Kurc, B., Skrzypczak, A., & Jesionowski, T. (2018). A comparison of protic and aprotic ionic liquids as effective activating agents of kraft lignin. Developing functional MnO2/lignin hybrid materials. Journal of Molecular Liquids,261, 456–467.CrossRef
71.
go back to reference Dutta, T., Sun, J., Simmons, B.A., & Singh, S. (2017). Conversion of lignin to ionic liquids. Dutta, T., Sun, J., Simmons, B.A., & Singh, S. (2017). Conversion of lignin to ionic liquids.
72.
go back to reference Socha, A., Singh, S., Simmons, B.A., & Bergeron, M. (2014). Synthesis of novel ionic liquids from lignin-derived compounds. Socha, A., Singh, S., Simmons, B.A., & Bergeron, M. (2014). Synthesis of novel ionic liquids from lignin-derived compounds.
73.
go back to reference Varanasi, P., Singh, P., Auer, M., Adams, P. D., Simmons, B. A., & Singh, S. (2013). Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment. Biotechnology for Biofuels,6, 14.CrossRef Varanasi, P., Singh, P., Auer, M., Adams, P. D., Simmons, B. A., & Singh, S. (2013). Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment. Biotechnology for Biofuels,6, 14.CrossRef
74.
go back to reference Socha, A. M., Parthasarathi, R., Shi, J., Pattathil, S., Whyte, D., Bergeron, M., et al. (2014). Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proceedings of the National Academy of Sciences,111, E3587–E3595.CrossRef Socha, A. M., Parthasarathi, R., Shi, J., Pattathil, S., Whyte, D., Bergeron, M., et al. (2014). Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proceedings of the National Academy of Sciences,111, E3587–E3595.CrossRef
75.
go back to reference Jiang, N., Pu, Y., Samuel, R., & Ragauskas, A. J. (2009). Perdeuterated pyridinium molten salt (ionic liquid) for direct dissolution and NMR analysis of plant cell walls. Green Chemistry,11, 1762–1766.CrossRef Jiang, N., Pu, Y., Samuel, R., & Ragauskas, A. J. (2009). Perdeuterated pyridinium molten salt (ionic liquid) for direct dissolution and NMR analysis of plant cell walls. Green Chemistry,11, 1762–1766.CrossRef
76.
go back to reference Yelle, D. J., Ralph, J., & Frihart, C. R. (2008). Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy. Magnetic Resonance in Chemistry,46, 508–517.CrossRef Yelle, D. J., Ralph, J., & Frihart, C. R. (2008). Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy. Magnetic Resonance in Chemistry,46, 508–517.CrossRef
77.
go back to reference Cheng, K., Sorek, H., Zimmermann, H., Wemmer, D. E., & Pauly, M. (2013). Solution-state 2D NMR spectroscopy of plant cell walls enabled by a dimethylsulfoxide-d 6/1-ethyl-3-methylimidazolium acetate solvent. Analytical Chemistry,85, 3213–3221.CrossRef Cheng, K., Sorek, H., Zimmermann, H., Wemmer, D. E., & Pauly, M. (2013). Solution-state 2D NMR spectroscopy of plant cell walls enabled by a dimethylsulfoxide-d 6/1-ethyl-3-methylimidazolium acetate solvent. Analytical Chemistry,85, 3213–3221.CrossRef
78.
go back to reference Zoia, L., King, A. W., & Argyropoulos, D. S. (2011). Molecular weight distributions and linkages in lignocellulosic materials derivatized from ionic liquid media. Journal of Agricultural and Food Chemistry,59, 829–838.CrossRef Zoia, L., King, A. W., & Argyropoulos, D. S. (2011). Molecular weight distributions and linkages in lignocellulosic materials derivatized from ionic liquid media. Journal of Agricultural and Food Chemistry,59, 829–838.CrossRef
79.
go back to reference Engel, P., Hein, L., & Spiess, A. C. (2012). Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis. Biotechnology for Biofuels,5, 77.CrossRef Engel, P., Hein, L., & Spiess, A. C. (2012). Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis. Biotechnology for Biofuels,5, 77.CrossRef
80.
go back to reference Cadoche, L., & Lopez, G. D. (1989). Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biological Wastes,30, 153–157.CrossRef Cadoche, L., & Lopez, G. D. (1989). Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biological Wastes,30, 153–157.CrossRef
81.
go back to reference Miao, Z., Grift, T. E., Hansen, A. C., & Ting, K. C. (2011). Energy requirement for comminution of biomass in relation to particle physical properties. Industrial Crops and Products,33, 504–513.CrossRef Miao, Z., Grift, T. E., Hansen, A. C., & Ting, K. C. (2011). Energy requirement for comminution of biomass in relation to particle physical properties. Industrial Crops and Products,33, 504–513.CrossRef
82.
go back to reference Sokhansanj, S., Kumar, A., & Turhollow, A. F. (2006). Development and implementation of integrated biomass supply analysis and logistics model (IBSAL). Biomass and Bioenergy,30, 838–847.CrossRef Sokhansanj, S., Kumar, A., & Turhollow, A. F. (2006). Development and implementation of integrated biomass supply analysis and logistics model (IBSAL). Biomass and Bioenergy,30, 838–847.CrossRef
83.
go back to reference Brandt, A., Erickson, J. K., Hallett, J. P., Murphy, R. J., Potthast, A., Ray, M. J., et al. (2012). Soaking of pine wood chips with ionic liquids for reduced energy input during grinding. Green Chemistry,14, 1079–1085.CrossRef Brandt, A., Erickson, J. K., Hallett, J. P., Murphy, R. J., Potthast, A., Ray, M. J., et al. (2012). Soaking of pine wood chips with ionic liquids for reduced energy input during grinding. Green Chemistry,14, 1079–1085.CrossRef
84.
go back to reference King, A. W., Parviainen, A., Karhunen, P., Matikainen, J., Hauru, L. K., Sixta, H., et al. (2012). Relative and inherent reactivities of imidazolium-based ionic liquids: the implications for lignocellulose processing applications. RSC Advances,2, 8020–8026.CrossRef King, A. W., Parviainen, A., Karhunen, P., Matikainen, J., Hauru, L. K., Sixta, H., et al. (2012). Relative and inherent reactivities of imidazolium-based ionic liquids: the implications for lignocellulose processing applications. RSC Advances,2, 8020–8026.CrossRef
85.
go back to reference Mazza, M., Catana, D.-A., Vaca-Garcia, C., & Cecutti, C. (2009). Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose,16, 207–215.CrossRef Mazza, M., Catana, D.-A., Vaca-Garcia, C., & Cecutti, C. (2009). Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose,16, 207–215.CrossRef
86.
go back to reference Sun, N., Liu, H., Sathitsuksanoh, N., Stavila, V., Sawant, M., Bonito, A., et al. (2013). Production and extraction of sugars from switchgrass hydrolyzed in ionic liquids. Biotechnology for Biofuels,6, 39.CrossRef Sun, N., Liu, H., Sathitsuksanoh, N., Stavila, V., Sawant, M., Bonito, A., et al. (2013). Production and extraction of sugars from switchgrass hydrolyzed in ionic liquids. Biotechnology for Biofuels,6, 39.CrossRef
87.
go back to reference da Costa Lopes, A. M., & Lukasik, R. M. (2018). Separation and Recovery of a Hemicellulose-Derived Sugar Produced from the Hydrolysis of Biomass by an Acidic Ionic Liquid. Chemsuschem,11, 1099–1107.CrossRef da Costa Lopes, A. M., & Lukasik, R. M. (2018). Separation and Recovery of a Hemicellulose-Derived Sugar Produced from the Hydrolysis of Biomass by an Acidic Ionic Liquid. Chemsuschem,11, 1099–1107.CrossRef
88.
go back to reference Amde, M., Liu, J.-F., & Pang, L. (2015). Environmental application, fate, effects, and concerns of ionic liquids: a review. Environmental Science & Technology,49, 12611–12627.CrossRef Amde, M., Liu, J.-F., & Pang, L. (2015). Environmental application, fate, effects, and concerns of ionic liquids: a review. Environmental Science & Technology,49, 12611–12627.CrossRef
89.
go back to reference Reid, J. E., Prydderch, H., Spulak, M., Shimizu, S., Walker, A. J., & Gathergood, N. (2018). Green profiling of aprotic versus protic ionic liquids: Synthesis and microbial toxicity of analogous structures. Sustainable Chemistry and Pharmacy,7, 17–26.CrossRef Reid, J. E., Prydderch, H., Spulak, M., Shimizu, S., Walker, A. J., & Gathergood, N. (2018). Green profiling of aprotic versus protic ionic liquids: Synthesis and microbial toxicity of analogous structures. Sustainable Chemistry and Pharmacy,7, 17–26.CrossRef
90.
go back to reference Egorova, K. S., & Ananikov, V. P. (2014). Toxicity of ionic liquids: Eco (cyto) activity as complicated, but unavoidable parameter for task-specific optimization. Chemsuschem,7, 336–360.CrossRef Egorova, K. S., & Ananikov, V. P. (2014). Toxicity of ionic liquids: Eco (cyto) activity as complicated, but unavoidable parameter for task-specific optimization. Chemsuschem,7, 336–360.CrossRef
91.
go back to reference Petkovic, M., Seddon, K. R., Rebelo, L. P. N., & Pereira, C. S. (2011). Ionic liquids: A pathway to environmental acceptability. Chemical Society Reviews,40, 1383–1403.CrossRef Petkovic, M., Seddon, K. R., Rebelo, L. P. N., & Pereira, C. S. (2011). Ionic liquids: A pathway to environmental acceptability. Chemical Society Reviews,40, 1383–1403.CrossRef
92.
go back to reference Pham, T. P. T., Cho, C.-W., & Yun, Y.-S. (2010). Environmental fate and toxicity of ionic liquids: A review. Water Research,44, 352–372.CrossRef Pham, T. P. T., Cho, C.-W., & Yun, Y.-S. (2010). Environmental fate and toxicity of ionic liquids: A review. Water Research,44, 352–372.CrossRef
93.
go back to reference Oliveira, M.V., Vidal, B.T., Melo, C.M., de Miranda, R.D.C., Soares, C.M., Coutinho, J., et al. (2016). (Eco) toxicity and biodegradability of protic ionic liquids. Chemosphere, 147, 460–466.CrossRef Oliveira, M.V., Vidal, B.T., Melo, C.M., de Miranda, R.D.C., Soares, C.M., Coutinho, J., et al. (2016). (Eco) toxicity and biodegradability of protic ionic liquids. Chemosphere, 147, 460–466.CrossRef
94.
go back to reference Grzonkowska, M., Sosnowska, A., Barycki, M., Rybinska, A., & Puzyn, T. (2016). How the structure of ionic liquid affects its toxicity to Vibrio fischeri? Chemosphere,159, 199–207.CrossRef Grzonkowska, M., Sosnowska, A., Barycki, M., Rybinska, A., & Puzyn, T. (2016). How the structure of ionic liquid affects its toxicity to Vibrio fischeri? Chemosphere,159, 199–207.CrossRef
95.
go back to reference Biczak, R., Pawlowska, B., Balczewski, P., & Rychter, P. (2014). The role of the anion in the toxicity of imidazolium ionic liquids. Journal of Hazardous Materials,274, 181–190.CrossRef Biczak, R., Pawlowska, B., Balczewski, P., & Rychter, P. (2014). The role of the anion in the toxicity of imidazolium ionic liquids. Journal of Hazardous Materials,274, 181–190.CrossRef
96.
go back to reference Peric, B., Sierra, J., Marti, E., Cruanas, R., Garau, M. A., Arning, J., et al. (2013). (Eco) toxicity and biodegradability of selected protic and aprotic ionic liquids. Journal of Hazardous Materials,261, 99–105.CrossRef Peric, B., Sierra, J., Marti, E., Cruanas, R., Garau, M. A., Arning, J., et al. (2013). (Eco) toxicity and biodegradability of selected protic and aprotic ionic liquids. Journal of Hazardous Materials,261, 99–105.CrossRef
97.
go back to reference Wiredu, B., & Amarasekara, A. S. (2014). Synthesis of a silica-immobilized Bronsted acidic ionic liquid catalyst and hydrolysis of cellulose in water under mild conditions. Catalysis Communications,48, 41–44.CrossRef Wiredu, B., & Amarasekara, A. S. (2014). Synthesis of a silica-immobilized Bronsted acidic ionic liquid catalyst and hydrolysis of cellulose in water under mild conditions. Catalysis Communications,48, 41–44.CrossRef
98.
go back to reference Klein-Marcuschamer, D., Simmons, B. A., & Blanch, H. W. (2011). Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels, Bioproducts and Biorefining, 5, 562–569.CrossRef Klein-Marcuschamer, D., Simmons, B. A., & Blanch, H. W. (2011). Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels, Bioproducts and Biorefining, 5, 562–569.CrossRef
Metadata
Title
Ionic Liquids Based Processing of Renewable and Sustainable Biopolymers
Authors
Sadia Naz
Maliha Uroos
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-40301-0_9

Premium Partners