Skip to main content
Top

2020 | OriginalPaper | Chapter

Water Hyacinth for Biocomposites—An Overview

Authors : A. Ajithram, J. T. Winowlin Jappes, Thiagamani Senthil Muthu Kumar, Nagarajan Rajini, Anumakonda Varada Rajulu, Sanjay Mavinkere Rangappa, Suchart Siengchin

Published in: Biofibers and Biopolymers for Biocomposites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, there is a mounting interest in the utilization of natural fibers in composite materials due to their abundancy, low density and weight, low cost, recyclability and biodegradable properties. It is well known that these plant fibers are rich in cellulose and have the greater potential as reinforcements in polymeric materials to form polymer composites. Natural fibers were already proved as a better alternative for high cost synthetic fibers such as glass, carbon, kevlar and basalt etc. This article presents an overview on the environmental impact of aquatic weed water hyacinth (Eichhornea crassipe). Furthermore, emphasis is given on the extraction of fibers from water hyacinth, fabrication of composites and the effective utilization of the extracted natural fiber in composite materials for various applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Herrera-Franco, P. J., & Valadez-Gonzalez, A. (2005). A study of the mechanical properties of short natural—fiber reinforced composites. Composites Part B: Engineering, 36(8), 597–608.CrossRef Herrera-Franco, P. J., & Valadez-Gonzalez, A. (2005). A study of the mechanical properties of short natural—fiber reinforced composites. Composites Part B: Engineering, 36(8), 597–608.CrossRef
2.
go back to reference Tan, S.J., Supri, A.J., & Chong, K.M. (2007). Properties of recycled high-density polyethylene/water hyacinth fiber composites: the effect of different concentration of compatibilizer. Polymer Bulletin, 1387–1393. Tan, S.J., Supri, A.J., & Chong, K.M. (2007). Properties of recycled high-density polyethylene/water hyacinth fiber composites: the effect of different concentration of compatibilizer. Polymer Bulletin, 1387–1393.
3.
go back to reference Bhattacharya, A., & Kumar, P. (2010). Water hyacinth as a potential biofuel crop. Electronic journal of Environmental, Agricultural and Food Chemistry, 9(1), 112–122. Bhattacharya, A., & Kumar, P. (2010). Water hyacinth as a potential biofuel crop. Electronic journal of Environmental, Agricultural and Food Chemistry, 9(1), 112–122.
4.
go back to reference Hairul, A., Hendri, P., Sapuan, S.M., & Ishak, M.R. (2013). Effect of alkalization on mechanical properties of water hyacinth fibers-unsaturated polyester composites, Polymer-Plastics Technology and Engineering, 52, 446–451. Hairul, A., Hendri, P., Sapuan, S.M., & Ishak, M.R. (2013). Effect of alkalization on mechanical properties of water hyacinth fibers-unsaturated polyester composites, Polymer-Plastics Technology and Engineering, 52, 446–451.
5.
go back to reference Malik, A. (2007). Environmental challenge vis a vis opportunity: The case of water hyacinth. Environment International, 33(1), 122–138.CrossRef Malik, A. (2007). Environmental challenge vis a vis opportunity: The case of water hyacinth. Environment International, 33(1), 122–138.CrossRef
6.
go back to reference Mansour, O., Abdel-Hady, B., Ibrahem, S.K., & Goda, M. (2011). Polymer Plastic Tech Engineering, 40, 311. Mansour, O., Abdel-Hady, B., Ibrahem, S.K., & Goda, M. (2011). Polymer Plastic Tech Engineering, 40, 311.
7.
go back to reference Flores Ramirez, N., Sanchez Hernandez, Y., Cruz de Leon, J., Vasquez Garcia, S. R., Domratcheva, L., & Garcia Gonzalez, L. (2015). Composites from water hyacinth and polyester resin. Fibers and Polymers, 16(1), 196–200.CrossRef Flores Ramirez, N., Sanchez Hernandez, Y., Cruz de Leon, J., Vasquez Garcia, S. R., Domratcheva, L., & Garcia Gonzalez, L. (2015). Composites from water hyacinth and polyester resin. Fibers and Polymers, 16(1), 196–200.CrossRef
8.
go back to reference Abral, H., Kadriadi, D., Rodianus, A., Mastariyanto, P., Ilhamdi, Arief, S., Sapuan, SM., & Ihak, R. (2014). Mechanical properties of water hyacinth fibers—polyester composites before and after immersion in water. Materials and Design, 58, 125–129 Abral, H., Kadriadi, D., Rodianus, A., Mastariyanto, P., Ilhamdi, Arief, S., Sapuan, SM., & Ihak, R. (2014). Mechanical properties of water hyacinth fibers—polyester composites before and after immersion in water. Materials and Design, 58, 125–129
9.
go back to reference Supri, A. G., Tan, S. J., Ismail, H., & Teh, P. L. (2013). Enhancing Interfacial Adhesion performance by using Poly (vinyl alcohol) in (low-density polyethylene)/(natural rubber)/(water hyacinth fiber) composites. Journal of Vinyl & Additive Technology, 19, 47–54.CrossRef Supri, A. G., Tan, S. J., Ismail, H., & Teh, P. L. (2013). Enhancing Interfacial Adhesion performance by using Poly (vinyl alcohol) in (low-density polyethylene)/(natural rubber)/(water hyacinth fiber) composites. Journal of Vinyl & Additive Technology, 19, 47–54.CrossRef
10.
go back to reference Phenology, T. H. E., Hyacinth, W., Lake, F., & Spencer, N. R. (1981). Aquatic Botany, 10(1–32), 10. Phenology, T. H. E., Hyacinth, W., Lake, F., & Spencer, N. R. (1981). Aquatic Botany, 10(1–32), 10.
11.
go back to reference Kgser, H.J.K., & Schmalstieg, G. (1982). Densification of water hyacinth basic data, 61, 791–798. Kgser, H.J.K., & Schmalstieg, G. (1982). Densification of water hyacinth basic data, 61, 791–798.
12.
go back to reference Solms, M. (2018). the resource utilization of water hyacinth. Journal of Environmental Management, 87. Solms, M. (2018). the resource utilization of water hyacinth. Journal of Environmental Management, 87.
13.
go back to reference Tumolva, T., Ortenero, J., Kubouchi, M., & City. (2019). Characterization and treatment of water. International Journal of Engineering and Technology, 8(1.9), 1–11. Tumolva, T., Ortenero, J., Kubouchi, M., & City. (2019). Characterization and treatment of water. International Journal of Engineering and Technology, 8(1.9), 1–11.
14.
go back to reference Sahari, J., Sapuan, S. M., Zainudin, E. S., & Maleque, M. A. (2013). Mechanical and thermal properties of environmentally friendly composites derived from sugar palm tree. Materials and Design, 49, 285–289.CrossRef Sahari, J., Sapuan, S. M., Zainudin, E. S., & Maleque, M. A. (2013). Mechanical and thermal properties of environmentally friendly composites derived from sugar palm tree. Materials and Design, 49, 285–289.CrossRef
15.
go back to reference Singha, A.S., & Thakur, V.K. (2014). Physical, Chemical and Mechanical Properties of Hibiscus sabdariffa Fiber/Polymer Composite. International Journal of Polymeric Materials and Polymeric Biomaterials, 37–41. Singha, A.S., & Thakur, V.K. (2014). Physical, Chemical and Mechanical Properties of Hibiscus sabdariffa Fiber/Polymer Composite. International Journal of Polymeric Materials and Polymeric Biomaterials, 37–41.
16.
go back to reference Sundari, M. T., & Ramesh, A. (2012). Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth—Eichhornia crassipes. Carbohydrate Polymers, 87(2), 1701–1705.CrossRef Sundari, M. T., & Ramesh, A. (2012). Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth—Eichhornia crassipes. Carbohydrate Polymers, 87(2), 1701–1705.CrossRef
17.
go back to reference Ghani, S.A., & Lim, B.Y. (2009). Effect of treated and untreated filler loading on the mechanical, morphological, and water absorption properties of water hyacinth fibers-low density polyethylene composites. Journal of Physical Science, 20(2), 85–96 Ghani, S.A., & Lim, B.Y. (2009). Effect of treated and untreated filler loading on the mechanical, morphological, and water absorption properties of water hyacinth fibers-low density polyethylene composites. Journal of Physical Science, 20(2), 85–96
18.
go back to reference Supri, A.G., Tan, S.J., & Teh, P.L. (2011). Effect of poly (methyl Methacrylate) modified water hyacinth fiber on properties of low density Polyethylene/Natural Rubber/Water Hyacinth Fiber Composites. Polymer Plastics Technology and Engineering, 2559(2016). Supri, A.G., Tan, S.J., & Teh, P.L. (2011). Effect of poly (methyl Methacrylate) modified water hyacinth fiber on properties of low density Polyethylene/Natural Rubber/Water Hyacinth Fiber Composites. Polymer Plastics Technology and Engineering, 2559(2016).
19.
go back to reference Reddy, K.R., & Sutton, D.L. (1984). Reviews and analyses Waterhyacinths for Water Quality Improvement. Journal of Environmental Quality, 13(4868). Reddy, K.R., & Sutton, D.L. (1984). Reviews and analyses Waterhyacinths for Water Quality Improvement. Journal of Environmental Quality, 13(4868).
20.
go back to reference Singhal, V., & Rai, J. P. N. (2003). Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents. Biosource Technology, 86, 221–225.CrossRef Singhal, V., & Rai, J. P. N. (2003). Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents. Biosource Technology, 86, 221–225.CrossRef
21.
go back to reference Verma, V. K., Singh, Y. P., & Rai, J. P. N. (2007). Biogas production from plant biomass used for phytoremediation of industrial wastes. Biosource Technology, 98, 1664–1669.CrossRef Verma, V. K., Singh, Y. P., & Rai, J. P. N. (2007). Biogas production from plant biomass used for phytoremediation of industrial wastes. Biosource Technology, 98, 1664–1669.CrossRef
22.
go back to reference Bernard, P., Lhote, A., & Legube, B. (2019). Principal component analysis : an appropriate tool for water quality evaluation and management—application to a tropical lake system. Ecological Modelling, 178, 295–311 Bernard, P., Lhote, A., & Legube, B. (2019). Principal component analysis : an appropriate tool for water quality evaluation and management—application to a tropical lake system. Ecological Modelling, 178, 295–311
23.
go back to reference Harish, S., Michael, D. P., Bensely, A., Lal, D. M., & Rajadurai, A. (2008). Mechanical property evaluation of natural fiber coir composite. Materials Characterization, 60(1), 44–49.CrossRef Harish, S., Michael, D. P., Bensely, A., Lal, D. M., & Rajadurai, A. (2008). Mechanical property evaluation of natural fiber coir composite. Materials Characterization, 60(1), 44–49.CrossRef
24.
go back to reference Asrofi, M., Abral, H., Kasim, A., Pratoto, A., Mahardika, M., & Hafizulhaq, F. (2018). Mechanical properties of a water hyacinth nanofiber cellulose reinforced thermoplastic starch bionanocomposite: Effect of ultrasonic vibration during processing. Fibers, 6(2), 1–9.CrossRef Asrofi, M., Abral, H., Kasim, A., Pratoto, A., Mahardika, M., & Hafizulhaq, F. (2018). Mechanical properties of a water hyacinth nanofiber cellulose reinforced thermoplastic starch bionanocomposite: Effect of ultrasonic vibration during processing. Fibers, 6(2), 1–9.CrossRef
25.
go back to reference Abral, H., Lawrensius, V., Handayani, D., & Sugiarti, E. (2018). Preparation of nano-sized particles from bacterial cellulose using ultrasonication and their characterization. Carbohydrate Polymers, 191(September 2017), 161–167. Abral, H., Lawrensius, V., Handayani, D., & Sugiarti, E. (2018). Preparation of nano-sized particles from bacterial cellulose using ultrasonication and their characterization. Carbohydrate Polymers, 191(September 2017), 161–167.
26.
go back to reference Bledzki, A. K., Reihmane, S., & Gassan, J. (1998). Thermoplastics reinforced with wood fillers: A literature review. Polymer—Plastics Technology and Engineering, 37(4), 451–468.CrossRef Bledzki, A. K., Reihmane, S., & Gassan, J. (1998). Thermoplastics reinforced with wood fillers: A literature review. Polymer—Plastics Technology and Engineering, 37(4), 451–468.CrossRef
27.
go back to reference Kalia, S., Dufresne, A., Cherian, B.M., Kaith, B.S., Avérous, L., Njuguna, J., & Nassiopoulos, E. (2011). Cellulose-based bio- and nanocomposites: A review. International Journal of Polymer Science, 2011. Kalia, S., Dufresne, A., Cherian, B.M., Kaith, B.S., Avérous, L., Njuguna, J., & Nassiopoulos, E. (2011). Cellulose-based bio- and nanocomposites: A review. International Journal of Polymer Science, 2011.
28.
go back to reference Moorhead, K. K., Reddy, K. R., & Graetz, D. A. (1988). Water hyacinth productivity and detritus accumulation. Hydrobiologia, 157(2), 179–185.CrossRef Moorhead, K. K., Reddy, K. R., & Graetz, D. A. (1988). Water hyacinth productivity and detritus accumulation. Hydrobiologia, 157(2), 179–185.CrossRef
29.
go back to reference Patel, V., Desai, M., & Madamwar, D. (1993). Thermochemical pretreatment of water hyacinth for improved biomethanation. Applied Biochemistry and Biotechnology, 42(1), 67–74.CrossRef Patel, V., Desai, M., & Madamwar, D. (1993). Thermochemical pretreatment of water hyacinth for improved biomethanation. Applied Biochemistry and Biotechnology, 42(1), 67–74.CrossRef
30.
go back to reference Jarukumjorn, K., & Suppakarn, N. (2009). Effect of glass fiber hybridization on properties of sisal fiber-polypropylene composites. Composites Part B: Engineering, 40(7), 623–627.CrossRef Jarukumjorn, K., & Suppakarn, N. (2009). Effect of glass fiber hybridization on properties of sisal fiber-polypropylene composites. Composites Part B: Engineering, 40(7), 623–627.CrossRef
31.
go back to reference Reed, K. E. (1980). Dynamic mechanical analysis of fiber reinforced composites. Polymer Composites, 1(1), 44–49.CrossRef Reed, K. E. (1980). Dynamic mechanical analysis of fiber reinforced composites. Polymer Composites, 1(1), 44–49.CrossRef
32.
go back to reference Taylor, P., Van Wyk, E., & Van Wilgen, B.W. (2002). The cost of water hyacinth control in South Africa. African Journal of Aqatic Science, 37–41. Taylor, P., Van Wyk, E., & Van Wilgen, B.W. (2002). The cost of water hyacinth control in South Africa. African Journal of Aqatic Science, 37–41.
33.
go back to reference Sanjay, M.R., Arpitha, G.R., Naik, L.L., Gopalakrishna, K., & Yogesha, B. (2016). Applications of natural fibers and its composites : An overview. Natural Resources, 108–114. Sanjay, M.R., Arpitha, G.R., Naik, L.L., Gopalakrishna, K., & Yogesha, B. (2016). Applications of natural fibers and its composites : An overview. Natural Resources, 108–114.
34.
go back to reference Sanjay, M.R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., & Pradeep, S. (2018). Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 172. Sanjay, M.R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., & Pradeep, S. (2018). Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 172.
35.
go back to reference Zhou, W., Zhu, D., Tan, L., Liao, S., Hu, Z., & Hamilton, D. (2007). Extraction and retrieval of potassium from water hyacinth (Eichhornia crassipes). Bioresource Technology, 98(1), 226–231.CrossRef Zhou, W., Zhu, D., Tan, L., Liao, S., Hu, Z., & Hamilton, D. (2007). Extraction and retrieval of potassium from water hyacinth (Eichhornia crassipes). Bioresource Technology, 98(1), 226–231.CrossRef
36.
go back to reference Abral, H., Kadriadi, D., Rodianus, A., Mastariyanto, P., Arief, S., Sapuan, S. M., et al. (2014). Mechanical properties of water hyacinth fibers—polyester composites before and after immersion in water. Materials and Design, 58, 125–129.CrossRef Abral, H., Kadriadi, D., Rodianus, A., Mastariyanto, P., Arief, S., Sapuan, S. M., et al. (2014). Mechanical properties of water hyacinth fibers—polyester composites before and after immersion in water. Materials and Design, 58, 125–129.CrossRef
37.
go back to reference Adhikary, K. B., Pang, S., & Staiger, M. P. (2008). Dimensional stability and mechanical behaviour of wood—plastic composites based on recycled and virgin high-density polyethylene (HDPE). Composite Part B: Engineering, 39, 807–815.CrossRef Adhikary, K. B., Pang, S., & Staiger, M. P. (2008). Dimensional stability and mechanical behaviour of wood—plastic composites based on recycled and virgin high-density polyethylene (HDPE). Composite Part B: Engineering, 39, 807–815.CrossRef
38.
go back to reference Goswami, T., & Saikia, C. N. (1995). Water hyacinth—a potential source of raw material for greaseproof paper. 50(1994), 235–238. Goswami, T., & Saikia, C. N. (1995). Water hyacinth—a potential source of raw material for greaseproof paper. 50(1994), 235–238.
39.
go back to reference Temi, T., & Michael, H. Jr. (2007). Adsorption of methyl red by water-hyacinth (Eichornia crassipes). Biomass Chemistry and Biodiversity, 4. Temi, T., & Michael, H. Jr. (2007). Adsorption of methyl red by water-hyacinth (Eichornia crassipes). Biomass Chemistry and Biodiversity, 4.
40.
go back to reference Mishima, D. (2008). Ethanol production from candidate energy crops: Water hyacinth (Eichhornia crassipes) and water lettuce. Bio resource Technology, 99, 2495–2500.CrossRef Mishima, D. (2008). Ethanol production from candidate energy crops: Water hyacinth (Eichhornia crassipes) and water lettuce. Bio resource Technology, 99, 2495–2500.CrossRef
41.
go back to reference Rezania, S., Fadhil, M., & Fatimah, S. (2016). Evaluation of water hyacinth (Eichornia crassipes) as a potential raw material source for briquette production. Energy, 111, 768–773. Rezania, S., Fadhil, M., & Fatimah, S. (2016). Evaluation of water hyacinth (Eichornia crassipes) as a potential raw material source for briquette production. Energy, 111, 768–773.
Metadata
Title
Water Hyacinth for Biocomposites—An Overview
Authors
A. Ajithram
J. T. Winowlin Jappes
Thiagamani Senthil Muthu Kumar
Nagarajan Rajini
Anumakonda Varada Rajulu
Sanjay Mavinkere Rangappa
Suchart Siengchin
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-40301-0_8

Premium Partners