Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

15-09-2022

IoT Routing Attacks Detection Using Machine Learning Algorithms

Authors: Sana Rabhi, Tarek Abbes, Faouzi Zarai

Published in: Wireless Personal Communications

Login to get access
share
SHARE

Abstract

Internet of Things (IoT) is a concept that aims to make the real world more intelligent but susceptible to various attacks. In this paper, we focus on wireless sensor networks (WSNs), as a founding block in the IoT presenting the vulnerability of routing attacks against Routing Protocol for Low power and Lossy Network (RPL). Besides, we discuss some existing research proposals to detect intrusions, and we develop a technique for detecting three types of attacks against RPL. We simulate using Contiki-Cooja four network scenarios one normal and three malicious presenting different attacks, to be able to generate the training and the test sets that are used in the machine learning phase, in which we used WEKA, to decide according to the database whether the behavior is normal or malicious. For this phase, we use different classification algorithms, which enable us to obtain a high precision value that is superior to 96% in all cases.
Literature
1.
go back to reference Granjal, J., Monteiro, E., & Silva, J. S. (2015). Security for the internet of things: a survey of existing protocols and open research issues. IEEE Communications Surveys & Tutorials., 17(3), 1294–1312. CrossRef Granjal, J., Monteiro, E., & Silva, J. S. (2015). Security for the internet of things: a survey of existing protocols and open research issues. IEEE Communications Surveys & Tutorials., 17(3), 1294–1312. CrossRef
2.
go back to reference Kfoury, E., Saab, J., Younes, P., & Achkar, R. (2019). A self organizing map intrusion detection system for RPL protocol attacks. International Journal of Interdisciplinary Telecommunications and Networking (IJITN)., 11(1), 30–43. CrossRef Kfoury, E., Saab, J., Younes, P., & Achkar, R. (2019). A self organizing map intrusion detection system for RPL protocol attacks. International Journal of Interdisciplinary Telecommunications and Networking (IJITN)., 11(1), 30–43. CrossRef
3.
go back to reference Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., & Levis, P., et al. (2012). RPL: IPv6 routing protocol for low-power and lossy networks; Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., & Levis, P., et al. (2012). RPL: IPv6 routing protocol for low-power and lossy networks;
4.
go back to reference Wallgren, L., Raza, S., & Voigt, T. (2013). Routing attacks and countermeasures in the RPL-based internet of things. International Journal of Distributed Sensor Networks., 9(8), 794326. CrossRef Wallgren, L., Raza, S., & Voigt, T. (2013). Routing attacks and countermeasures in the RPL-based internet of things. International Journal of Distributed Sensor Networks., 9(8), 794326. CrossRef
5.
go back to reference Pongle, P., Chavan, G. A., & survey: Attacks on RPL and 6LoWPAN in IoT. In,. (2015). International conference on pervasive computing (ICPC). IEEE, 2015, 1–6. Pongle, P., Chavan, G. A., & survey: Attacks on RPL and 6LoWPAN in IoT. In,. (2015). International conference on pervasive computing (ICPC). IEEE, 2015, 1–6.
6.
go back to reference Anderson, J. P. (1980). Computer security threat monitoring and surveillance. James P Anderson Company: Technical Report. Anderson, J. P. (1980). Computer security threat monitoring and surveillance. James P Anderson Company: Technical Report.
7.
go back to reference Heberlein, LT., Dias, GV., Levitt, KN., Mukherjee, B., Wood, J., & Wolber, D. (1989). A network security monitor. Lawrence Livermore National Lab., CA (USA); California Univ., Davis, CA (USA ...; Heberlein, LT., Dias, GV., Levitt, KN., Mukherjee, B., Wood, J., & Wolber, D. (1989). A network security monitor. Lawrence Livermore National Lab., CA (USA); California Univ., Davis, CA (USA ...;
8.
go back to reference Gupta, A., Pandey, OJ., Shukla, M., Dadhich, A., Mathur, S., & Ingle, A. (2013). Computational intelligence based intrusion detection systems for wireless communication and pervasive computing networks. In: 2013 IEEE International Conference on Computational Intelligence and Computing Research. IEEE; p. 1–7. Gupta, A., Pandey, OJ., Shukla, M., Dadhich, A., Mathur, S., & Ingle, A. (2013). Computational intelligence based intrusion detection systems for wireless communication and pervasive computing networks. In: 2013 IEEE International Conference on Computational Intelligence and Computing Research. IEEE; p. 1–7.
9.
go back to reference Kavitha, P., & Usha, M. (2014). Cluster based anomaly detection in wireless LAN. International Journal of Computer Trends and Technology (IJCTT)., 12(5), 227–230. CrossRef Kavitha, P., & Usha, M. (2014). Cluster based anomaly detection in wireless LAN. International Journal of Computer Trends and Technology (IJCTT)., 12(5), 227–230. CrossRef
10.
go back to reference Yavuz, F. Y., Devrim, Ü., & Ensar, G. (2018). Deep learning for detection of routing attacks in the internet of things. International Journal of Computational Intelligence Systems., 12(1), 39. CrossRef Yavuz, F. Y., Devrim, Ü., & Ensar, G. (2018). Deep learning for detection of routing attacks in the internet of things. International Journal of Computational Intelligence Systems., 12(1), 39. CrossRef
11.
go back to reference Yuan, Y., Li, S., Zhang, X., & Sun, J. (2018). A comparative analysis of svm, naive bayes and gbdt for data faults detection in wsns. In: 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE; pp. 394–399. Yuan, Y., Li, S., Zhang, X., & Sun, J. (2018). A comparative analysis of svm, naive bayes and gbdt for data faults detection in wsns. In: 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE; pp. 394–399.
12.
go back to reference Napiah, M. N., Idris, M. Y. I. B., Ramli, R., & Ahmedy, I. (2018). Compression header analyzer intrusion detection system (CHA-IDS) for 6LoWPAN communication protocol. IEEE Access., 6, 16623–16638. CrossRef Napiah, M. N., Idris, M. Y. I. B., Ramli, R., & Ahmedy, I. (2018). Compression header analyzer intrusion detection system (CHA-IDS) for 6LoWPAN communication protocol. IEEE Access., 6, 16623–16638. CrossRef
13.
go back to reference Ioulianou, P., Vasilakis, V., Moscholios, I., & Logothetis, M. (2018) A signature-based intrusion detection system for the internet of things. Information and Communication Technology Form. . Ioulianou, P., Vasilakis, V., Moscholios, I., & Logothetis, M. (2018) A signature-based intrusion detection system for the internet of things. Information and Communication Technology Form. .
14.
go back to reference Shafique, U., Khan, A., Rehman, A., Bashir, F., & Alam, M. (2018). Detection of rank attack in routing protocol for Low Power and Lossy Networks. Annals of Telecommunications., 73(7), 429–438. CrossRef Shafique, U., Khan, A., Rehman, A., Bashir, F., & Alam, M. (2018). Detection of rank attack in routing protocol for Low Power and Lossy Networks. Annals of Telecommunications., 73(7), 429–438. CrossRef
15.
go back to reference Verma, A., Ranga, V., & ELNIDS: Ensemble learning based network intrusion detection system for RPL based Internet of Things. In,. (2019). 4th International conference on Internet of Things: Smart innovation and usages (IoT-SIU). IEEE, 2019, 1–6. Verma, A., Ranga, V., & ELNIDS: Ensemble learning based network intrusion detection system for RPL based Internet of Things. In,. (2019). 4th International conference on Internet of Things: Smart innovation and usages (IoT-SIU). IEEE, 2019, 1–6.
16.
go back to reference Kumar, V., Das, A. K., & Sinha, D. (2021). UIDS: a unified intrusion detection system for IoT environment. Evolutionary intelligence., 14(1), 47–59. CrossRef Kumar, V., Das, A. K., & Sinha, D. (2021). UIDS: a unified intrusion detection system for IoT environment. Evolutionary intelligence., 14(1), 47–59. CrossRef
17.
go back to reference Parra, G. D. L. T., Rad, P., Choo, K. K. R., & Beebe, N. (2020). Detecting Internet of Things attacks using distributed deep learning. Journal of Network and Computer Applications., 163, 102662. CrossRef Parra, G. D. L. T., Rad, P., Choo, K. K. R., & Beebe, N. (2020). Detecting Internet of Things attacks using distributed deep learning. Journal of Network and Computer Applications., 163, 102662. CrossRef
18.
go back to reference Ullah, I., & Mahmoud, Q. H. (2021). Design and development of a deep learning-based model for anomaly detection in IoT networks. IEEE Access., 9, 103906–103926. CrossRef Ullah, I., & Mahmoud, Q. H. (2021). Design and development of a deep learning-based model for anomaly detection in IoT networks. IEEE Access., 9, 103906–103926. CrossRef
19.
go back to reference Jan, S. U., Ahmed, S., Shakhov, V., & Koo, I. (2019). Toward a lightweight intrusion detection system for the internet of things. IEEE Access., 7, 42450–42471. CrossRef Jan, S. U., Ahmed, S., Shakhov, V., & Koo, I. (2019). Toward a lightweight intrusion detection system for the internet of things. IEEE Access., 7, 42450–42471. CrossRef
20.
go back to reference Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: an update. ACM SIGKDD explorations newsletter., 11(1), 10–18. CrossRef Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: an update. ACM SIGKDD explorations newsletter., 11(1), 10–18. CrossRef
21.
go back to reference Kulkarni, S. R., Lugosi, G., & Venkatesh, S. S. (1998). Learning pattern classification-a survey. IEEE Transactions on Information Theory., 44(6), 2178–2206. MathSciNetCrossRef Kulkarni, S. R., Lugosi, G., & Venkatesh, S. S. (1998). Learning pattern classification-a survey. IEEE Transactions on Information Theory., 44(6), 2178–2206. MathSciNetCrossRef
22.
go back to reference Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE transactions on systems, man, and cybernetics., 21(3), 660–674. MathSciNetCrossRef Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE transactions on systems, man, and cybernetics., 21(3), 660–674. MathSciNetCrossRef
Metadata
Title
IoT Routing Attacks Detection Using Machine Learning Algorithms
Authors
Sana Rabhi
Tarek Abbes
Faouzi Zarai
Publication date
15-09-2022
Publisher
Springer US
Published in
Wireless Personal Communications
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-10022-7