Skip to main content
Top

2018 | OriginalPaper | Chapter

3. Iterated Proportional Fitting Procedure and Infinite Products of Stochastic Matrices

Authors : J. Brossard, C. Leuridan

Published in: Séminaire de Probabilités XLIX

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The iterative proportional fitting procedure (IPFP), introduced in 1937 by Kruithof, aims to adjust the elements of an array to satisfy specified row and column sums. Thus, given a rectangular non-negative matrix X 0 and two positive marginals a and b, the algorithm generates a sequence of matrices (X n)n≥0 starting at X 0, supposed to converge to a biproportional fitting, that is, to a matrix Y whose marginals are a and b and of the form Y = D 1X 0D 2, for some diagonal matrices D 1 and D 2 with positive diagonal entries.
When a biproportional fitting does exist, it is unique and the sequence (X n)n≥0 converges to it at an at least geometric rate. More generally, when there exists some matrix with marginal a and b and with support included in the support of X 0, the sequence (X n)n≥0 converges to the unique matrix whose marginals are a and b and which can be written as a limit of matrices of the form D 1X 0D 2.
In the opposite case (when there exists no matrix with marginals a and b whose support is included in the support of X 0), the sequence (X n)n≥0 diverges but both subsequences (X 2n)n≥0 and (X 2n+1)n≥0 converge.
In the present paper, we use a new method to prove again these results and determine the two limit-points in the case of divergence. Our proof relies on a new convergence theorem for backward infinite products ⋯M 2M 1 of stochastic matrices M n, with diagonal entries M n(i, i) bounded away from 0 and with bounded ratios M n(j, i)∕M n(i, j). This theorem generalizes Lorenz’ stabilization theorem. We also provide an alternative proof of Touric and Nedić’s theorem on backward infinite products of doubly-stochastic matrices, with diagonal entries bounded away from 0. In both situations, we improve slightly the conclusion, since we establish not only the convergence of the sequence (M nM 1)n≥0, but also its finite variation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Namely \(\displaystyle {\sum _{i=1}^d U^\uparrow (d+1-i)V^\uparrow (i) \le \sum _{i=1}^d U(i)V(i) \le \sum _{i=1}^d U^\uparrow (i)V^\uparrow (i)}\) for every U and V in R d.
 
Literature
1.
go back to reference E. Aas, Limit points of the iterative scaling procedure. Ann. Oper. Res. 215(1), 15–23 (2014) E. Aas, Limit points of the iterative scaling procedure. Ann. Oper. Res. 215(1), 15–23 (2014)
2.
go back to reference M. Bacharach, Estimating nonnegative matrices from marginal data. Int. Econ. Rev. 6(3), 294–310 (1965) M. Bacharach, Estimating nonnegative matrices from marginal data. Int. Econ. Rev. 6(3), 294–310 (1965)
3.
go back to reference L.M. Bregman, Proof of the convergence of Sheleikhovskii’s method for a problem with transportation constraints. USSR Comput. Math. Math. Phys. 7(1), 191–204 (1967) L.M. Bregman, Proof of the convergence of Sheleikhovskii’s method for a problem with transportation constraints. USSR Comput. Math. Math. Phys. 7(1), 191–204 (1967)
4.
go back to reference J.B. Brown, P.J. Chase, A.O. Pittenger, Order independence and factor convergence in iterative scaling. Linear Algebra Appl. 190, 1–39 (1993) J.B. Brown, P.J. Chase, A.O. Pittenger, Order independence and factor convergence in iterative scaling. Linear Algebra Appl. 190, 1–39 (1993)
5.
go back to reference I. Csiszár, I-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3(1), 146–158 (1975) I. Csiszár, I-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3(1), 146–158 (1975)
6.
go back to reference S. Fienberg, An iterative procedure for estimation in contingency tables. Ann. Math. Stat. 41(3), 907–917 (1970) S. Fienberg, An iterative procedure for estimation in contingency tables. Ann. Math. Stat. 41(3), 907–917 (1970)
7.
go back to reference C. Gietl, F. Reffel, Accumulation points of the iterative scaling procedure. Metrika 73(1), 783–798 (2013) C. Gietl, F. Reffel, Accumulation points of the iterative scaling procedure. Metrika 73(1), 783–798 (2013)
8.
go back to reference C.T. Ireland, S. Kullback, Contingency tables with given marginals. Biometrika 55(1), 179–188 (1968) C.T. Ireland, S. Kullback, Contingency tables with given marginals. Biometrika 55(1), 179–188 (1968)
10.
go back to reference J. Lorenz, A stabilization theorem for dynamics of continuous opinions. Phys. A Stat. Mech. Appl. 355(1), 217–223 (2005) J. Lorenz, A stabilization theorem for dynamics of continuous opinions. Phys. A Stat. Mech. Appl. 355(1), 217–223 (2005)
11.
go back to reference O. Pretzel, Convergence of the iterative scaling procedure for non-negative matrices. J. Lond. Math. Soc. 21, 379–384 (1980) O. Pretzel, Convergence of the iterative scaling procedure for non-negative matrices. J. Lond. Math. Soc. 21, 379–384 (1980)
12.
go back to reference F. Pukelsheim, Biproportional matrix scaling and the iterative proportional fitting procedure. Ann. Oper. Res. 215, 269–283 (2014) F. Pukelsheim, Biproportional matrix scaling and the iterative proportional fitting procedure. Ann. Oper. Res. 215, 269–283 (2014)
13.
go back to reference R. Sinkhorn, Diagonal equivalence to matrices with prescribed row and column sums. Am. Math. Mon. 74(4), 402–405 (1967) R. Sinkhorn, Diagonal equivalence to matrices with prescribed row and column sums. Am. Math. Mon. 74(4), 402–405 (1967)
14.
go back to reference B. Touri, Product of random stochastic matrices and distributed averaging. Springer Thesis (2012) B. Touri, Product of random stochastic matrices and distributed averaging. Springer Thesis (2012)
15.
go back to reference B. Touri, A. Nedic, Alternative characterization of ergodicity for doubly stochastic chains, in Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL (2011), pp. 5371–5376 B. Touri, A. Nedic, Alternative characterization of ergodicity for doubly stochastic chains, in Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL (2011), pp. 5371–5376
16.
go back to reference B. Touri, A. Nedić, On ergodicity, infinite flow and consensus in random models. IEEE Trans. Autom. Control 56(7), 1593–1605 (2011)MathSciNetCrossRef B. Touri, A. Nedić, On ergodicity, infinite flow and consensus in random models. IEEE Trans. Autom. Control 56(7), 1593–1605 (2011)MathSciNetCrossRef
18.
go back to reference R. Webster, Convexity (Oxford University Press, Oxford, 1994)MATH R. Webster, Convexity (Oxford University Press, Oxford, 1994)MATH
Metadata
Title
Iterated Proportional Fitting Procedure and Infinite Products of Stochastic Matrices
Authors
J. Brossard
C. Leuridan
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-92420-5_3