Skip to main content

2018 | OriginalPaper | Buchkapitel

3. Iterated Proportional Fitting Procedure and Infinite Products of Stochastic Matrices

verfasst von : J. Brossard, C. Leuridan

Erschienen in: Séminaire de Probabilités XLIX

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The iterative proportional fitting procedure (IPFP), introduced in 1937 by Kruithof, aims to adjust the elements of an array to satisfy specified row and column sums. Thus, given a rectangular non-negative matrix X 0 and two positive marginals a and b, the algorithm generates a sequence of matrices (X n)n≥0 starting at X 0, supposed to converge to a biproportional fitting, that is, to a matrix Y whose marginals are a and b and of the form Y = D 1X 0D 2, for some diagonal matrices D 1 and D 2 with positive diagonal entries.
When a biproportional fitting does exist, it is unique and the sequence (X n)n≥0 converges to it at an at least geometric rate. More generally, when there exists some matrix with marginal a and b and with support included in the support of X 0, the sequence (X n)n≥0 converges to the unique matrix whose marginals are a and b and which can be written as a limit of matrices of the form D 1X 0D 2.
In the opposite case (when there exists no matrix with marginals a and b whose support is included in the support of X 0), the sequence (X n)n≥0 diverges but both subsequences (X 2n)n≥0 and (X 2n+1)n≥0 converge.
In the present paper, we use a new method to prove again these results and determine the two limit-points in the case of divergence. Our proof relies on a new convergence theorem for backward infinite products ⋯M 2M 1 of stochastic matrices M n, with diagonal entries M n(i, i) bounded away from 0 and with bounded ratios M n(j, i)∕M n(i, j). This theorem generalizes Lorenz’ stabilization theorem. We also provide an alternative proof of Touric and Nedić’s theorem on backward infinite products of doubly-stochastic matrices, with diagonal entries bounded away from 0. In both situations, we improve slightly the conclusion, since we establish not only the convergence of the sequence (M nM 1)n≥0, but also its finite variation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Namely \(\displaystyle {\sum _{i=1}^d U^\uparrow (d+1-i)V^\uparrow (i) \le \sum _{i=1}^d U(i)V(i) \le \sum _{i=1}^d U^\uparrow (i)V^\uparrow (i)}\) for every U and V in R d.
 
Literatur
1.
Zurück zum Zitat E. Aas, Limit points of the iterative scaling procedure. Ann. Oper. Res. 215(1), 15–23 (2014) E. Aas, Limit points of the iterative scaling procedure. Ann. Oper. Res. 215(1), 15–23 (2014)
2.
Zurück zum Zitat M. Bacharach, Estimating nonnegative matrices from marginal data. Int. Econ. Rev. 6(3), 294–310 (1965) M. Bacharach, Estimating nonnegative matrices from marginal data. Int. Econ. Rev. 6(3), 294–310 (1965)
3.
Zurück zum Zitat L.M. Bregman, Proof of the convergence of Sheleikhovskii’s method for a problem with transportation constraints. USSR Comput. Math. Math. Phys. 7(1), 191–204 (1967) L.M. Bregman, Proof of the convergence of Sheleikhovskii’s method for a problem with transportation constraints. USSR Comput. Math. Math. Phys. 7(1), 191–204 (1967)
4.
Zurück zum Zitat J.B. Brown, P.J. Chase, A.O. Pittenger, Order independence and factor convergence in iterative scaling. Linear Algebra Appl. 190, 1–39 (1993) J.B. Brown, P.J. Chase, A.O. Pittenger, Order independence and factor convergence in iterative scaling. Linear Algebra Appl. 190, 1–39 (1993)
5.
Zurück zum Zitat I. Csiszár, I-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3(1), 146–158 (1975) I. Csiszár, I-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3(1), 146–158 (1975)
6.
Zurück zum Zitat S. Fienberg, An iterative procedure for estimation in contingency tables. Ann. Math. Stat. 41(3), 907–917 (1970) S. Fienberg, An iterative procedure for estimation in contingency tables. Ann. Math. Stat. 41(3), 907–917 (1970)
7.
Zurück zum Zitat C. Gietl, F. Reffel, Accumulation points of the iterative scaling procedure. Metrika 73(1), 783–798 (2013) C. Gietl, F. Reffel, Accumulation points of the iterative scaling procedure. Metrika 73(1), 783–798 (2013)
8.
Zurück zum Zitat C.T. Ireland, S. Kullback, Contingency tables with given marginals. Biometrika 55(1), 179–188 (1968) C.T. Ireland, S. Kullback, Contingency tables with given marginals. Biometrika 55(1), 179–188 (1968)
10.
Zurück zum Zitat J. Lorenz, A stabilization theorem for dynamics of continuous opinions. Phys. A Stat. Mech. Appl. 355(1), 217–223 (2005) J. Lorenz, A stabilization theorem for dynamics of continuous opinions. Phys. A Stat. Mech. Appl. 355(1), 217–223 (2005)
11.
Zurück zum Zitat O. Pretzel, Convergence of the iterative scaling procedure for non-negative matrices. J. Lond. Math. Soc. 21, 379–384 (1980) O. Pretzel, Convergence of the iterative scaling procedure for non-negative matrices. J. Lond. Math. Soc. 21, 379–384 (1980)
12.
Zurück zum Zitat F. Pukelsheim, Biproportional matrix scaling and the iterative proportional fitting procedure. Ann. Oper. Res. 215, 269–283 (2014) F. Pukelsheim, Biproportional matrix scaling and the iterative proportional fitting procedure. Ann. Oper. Res. 215, 269–283 (2014)
13.
Zurück zum Zitat R. Sinkhorn, Diagonal equivalence to matrices with prescribed row and column sums. Am. Math. Mon. 74(4), 402–405 (1967) R. Sinkhorn, Diagonal equivalence to matrices with prescribed row and column sums. Am. Math. Mon. 74(4), 402–405 (1967)
14.
Zurück zum Zitat B. Touri, Product of random stochastic matrices and distributed averaging. Springer Thesis (2012) B. Touri, Product of random stochastic matrices and distributed averaging. Springer Thesis (2012)
15.
Zurück zum Zitat B. Touri, A. Nedic, Alternative characterization of ergodicity for doubly stochastic chains, in Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL (2011), pp. 5371–5376 B. Touri, A. Nedic, Alternative characterization of ergodicity for doubly stochastic chains, in Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL (2011), pp. 5371–5376
16.
Zurück zum Zitat B. Touri, A. Nedić, On ergodicity, infinite flow and consensus in random models. IEEE Trans. Autom. Control 56(7), 1593–1605 (2011)MathSciNetCrossRef B. Touri, A. Nedić, On ergodicity, infinite flow and consensus in random models. IEEE Trans. Autom. Control 56(7), 1593–1605 (2011)MathSciNetCrossRef
17.
18.
Zurück zum Zitat R. Webster, Convexity (Oxford University Press, Oxford, 1994)MATH R. Webster, Convexity (Oxford University Press, Oxford, 1994)MATH
Metadaten
Titel
Iterated Proportional Fitting Procedure and Infinite Products of Stochastic Matrices
verfasst von
J. Brossard
C. Leuridan
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-92420-5_3