Skip to main content
Top
Published in: Peer-to-Peer Networking and Applications 6/2023

20-09-2023

Joint DNN partitioning and resource allocation for completion rate maximization of delay-aware DNN inference tasks in wireless powered mobile edge computing

Authors: Xianzhong Tian, Pengcheng Xu, Yifan Shen, Yuheng Shao

Published in: Peer-to-Peer Networking and Applications | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the development of smart Internet of Things (IoT), it has seen a surge in wireless devices deploying Deep Neural Network (DNN) models for real-time computing tasks. However, the inherent resource and energy constraints of wireless devices make local completion of real-time inference tasks impractical. DNN model partitioning can partition the DNN model and use edge servers to assist in completing DNN model inference tasks, but offloading also requires a lot of transmission energy consumption. Additionally, the complex structure of DNN models means partitioning and offloading across different network layers impacts overall energy consumption significantly, complicating the development of an optimal partitioning strategy. Furthermore, in certain application contexts, regular battery charging or replacement for smart IoT devices is impractical and environmentally harmful. The development of wireless energy transfer technology enables devices to obtain RF energy through wireless transmission to achieve sustainable power supply. Motivated by this, We proposes a problem of joint DNN model partition and resource allocation in Wireless Powered Edge Computing (WPMEC). However, time-varying channel state in the WPMEC have a significant impact on resource allocation decisions. How to jointly optimize DNN model partition and resource allocation decisions is also a significant challenge. We proposes an online algorithm based on Deep Reinforcement Learning (DRL) to solve the time allocation decision, simplifying a Mixed Integer Nonlinear Problem (MINLP) into a convex optimization problem. Our approach seeks to maximize the completion rate of DNN inference tasks within the constraints of time-varying wireless channel states and delay constraints. Simulation results show the exceptional performance of this algorithm in enhancing task completion rates.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE (2017) A survey of deep neural network architectures and their applications. Neurocomputing 234:11–26CrossRef Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE (2017) A survey of deep neural network architectures and their applications. Neurocomputing 234:11–26CrossRef
2.
go back to reference Cardoso VB, Oliveira AS, Forechi A, Azevedo P, Mutz FW, Oliveira-Santos T, Badue C, Souza AFD (2020) A large-scale mapping method based on deep neural networks applied to self-driving car localization, pp 1–8 Cardoso VB, Oliveira AS, Forechi A, Azevedo P, Mutz FW, Oliveira-Santos T, Badue C, Souza AFD (2020) A large-scale mapping method based on deep neural networks applied to self-driving car localization, pp 1–8
3.
go back to reference Shah SH, Yaqoob I (2016) A survey: Internet of things (iot) technologies, applications and challenges. 2016 IEEE Smart Energy Grid Engineering (SEGE), pp 381–385 Shah SH, Yaqoob I (2016) A survey: Internet of things (iot) technologies, applications and challenges. 2016 IEEE Smart Energy Grid Engineering (SEGE), pp 381–385
4.
go back to reference Sze V, Chen Y, Yang T, Emer JS (2017) Efficient processing of deep neural networks: A tutorial and survey. Proc IEEE 105(12):2295–2329CrossRef Sze V, Chen Y, Yang T, Emer JS (2017) Efficient processing of deep neural networks: A tutorial and survey. Proc IEEE 105(12):2295–2329CrossRef
5.
go back to reference Roberts DA, Yaida S, Hanin B (2022) The principles of deep learning theory Roberts DA, Yaida S, Hanin B (2022) The principles of deep learning theory
6.
go back to reference Mao Y, You C, Zhang J, Huang K, Letaief KB (2017) A survey on mobile edge computing: The communication perspective. IEEE Commun Surv Tutor 19(4):2322–2358CrossRef Mao Y, You C, Zhang J, Huang K, Letaief KB (2017) A survey on mobile edge computing: The communication perspective. IEEE Commun Surv Tutor 19(4):2322–2358CrossRef
7.
go back to reference Mach P, Becvar Z (2017) Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun Surv Tutor 19(3):1628–1656CrossRef Mach P, Becvar Z (2017) Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun Surv Tutor 19(3):1628–1656CrossRef
8.
go back to reference Hu C, Bao W, Wang D, Liu F (2019) Dynamic adaptive DNN surgery for inference acceleration on the edge, pp 1423–1431 Hu C, Bao W, Wang D, Liu F (2019) Dynamic adaptive DNN surgery for inference acceleration on the edge, pp 1423–1431
9.
go back to reference Bi S, Ho CK, Zhang R (2015) Wireless powered communication: opportunities and challenges. IEEE Commun Mag 53(4):117–125CrossRef Bi S, Ho CK, Zhang R (2015) Wireless powered communication: opportunities and challenges. IEEE Commun Mag 53(4):117–125CrossRef
10.
go back to reference Guo Y, Yao A, Chen Y (2016) Dynamic network surgery for efficient dnns, pp 1379–1387 Guo Y, Yao A, Chen Y (2016) Dynamic network surgery for efficient dnns, pp 1379–1387
11.
go back to reference Han S, Liu X, Mao H, Pu J, Pedram A, Horowitz M, Dally B (2016) Deep compression and EIE: efficient inference engine on compressed deep neural network, pp 1–6 Han S, Liu X, Mao H, Pu J, Pedram A, Horowitz M, Dally B (2016) Deep compression and EIE: efficient inference engine on compressed deep neural network, pp 1–6
12.
go back to reference Han S, Mao H, Dally WJ (2015) Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149 Han S, Mao H, Dally WJ (2015) Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:​1510.​00149
13.
go back to reference Hoang DT, Lee C, Niyato D, Wang P (2013) A survey of mobile cloud computing: architecture, applications, and approaches. Wirel Commun Mob Comput 13(18):1587–1611CrossRef Hoang DT, Lee C, Niyato D, Wang P (2013) A survey of mobile cloud computing: architecture, applications, and approaches. Wirel Commun Mob Comput 13(18):1587–1611CrossRef
14.
go back to reference Rahimi MR, Ren J, Liu CH, Vasilakos AV, Venkatasubramanian N (2014) Mobile cloud computing: A survey, state of art and future directions. Mob Netw Appl 19(2):133–143CrossRef Rahimi MR, Ren J, Liu CH, Vasilakos AV, Venkatasubramanian N (2014) Mobile cloud computing: A survey, state of art and future directions. Mob Netw Appl 19(2):133–143CrossRef
15.
go back to reference Shahzad H, Szymanski TH (2016) A dynamic programming offloading algorithm for mobile cloud computing, pp 1–5 Shahzad H, Szymanski TH (2016) A dynamic programming offloading algorithm for mobile cloud computing, pp 1–5
16.
go back to reference Teerapittayanon S, McDanel B, Kung HT (2017) Distributed deep neural networks over the cloud, the edge and end devices, pp 328–339 Teerapittayanon S, McDanel B, Kung HT (2017) Distributed deep neural networks over the cloud, the edge and end devices, pp 328–339
17.
go back to reference Kang Y, Hauswald J, Gao C, Rovinski A, Mudge TN, Mars J, Tang L (2017) Neurosurgeon: Collaborative intelligence between the cloud and mobile edge, pp 615–629 Kang Y, Hauswald J, Gao C, Rovinski A, Mudge TN, Mars J, Tang L (2017) Neurosurgeon: Collaborative intelligence between the cloud and mobile edge, pp 615–629
18.
go back to reference Dong C, Hu S, Chen X, Wen W (2021) Joint optimization with DNN partitioning and resource allocation in mobile edge computing. IEEE Trans Netw Serv Manag 18(4):3973–3986CrossRef Dong C, Hu S, Chen X, Wen W (2021) Joint optimization with DNN partitioning and resource allocation in mobile edge computing. IEEE Trans Netw Serv Manag 18(4):3973–3986CrossRef
19.
go back to reference Xu Z, Zhao L, Liang W, Rana OF, Zhou P, Xia Q, Xu W, Wu G (2021) Energy-aware inference offloading for dnn-driven applications in mobile edge clouds. IEEE Trans Parallel Distrib Syst 32(4):799–814CrossRef Xu Z, Zhao L, Liang W, Rana OF, Zhou P, Xia Q, Xu W, Wu G (2021) Energy-aware inference offloading for dnn-driven applications in mobile edge clouds. IEEE Trans Parallel Distrib Syst 32(4):799–814CrossRef
20.
go back to reference Chen X, Li M, Zhong H, Ma Y, Hsu C (2022) Dnnoff: Offloading dnn-based intelligent iot applications in mobile edge computing. IEEE Trans Industr Inform 18(4):2820–2829CrossRef Chen X, Li M, Zhong H, Ma Y, Hsu C (2022) Dnnoff: Offloading dnn-based intelligent iot applications in mobile edge computing. IEEE Trans Industr Inform 18(4):2820–2829CrossRef
21.
go back to reference Mao S, Leng S, Yang K, Huang X, Zhao Q (2017) Fair energy-efficient scheduling in wireless powered full-duplex mobile-edge computing systems, pp 1–6 Mao S, Leng S, Yang K, Huang X, Zhao Q (2017) Fair energy-efficient scheduling in wireless powered full-duplex mobile-edge computing systems, pp 1–6
22.
go back to reference Bi S, Zhang YJ (2018) Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Trans Wirel Commun 17(6):4177–4190CrossRef Bi S, Zhang YJ (2018) Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Trans Wirel Commun 17(6):4177–4190CrossRef
23.
go back to reference Liu J, Xiong K, Ng DWK, Fan P, Zhong Z, Letaief KB (2020) Max-min energy balance in wireless-powered hierarchical fog-cloud computing networks. IEEE Trans Wirel Commun 19(11):7064–7080CrossRef Liu J, Xiong K, Ng DWK, Fan P, Zhong Z, Letaief KB (2020) Max-min energy balance in wireless-powered hierarchical fog-cloud computing networks. IEEE Trans Wirel Commun 19(11):7064–7080CrossRef
Metadata
Title
Joint DNN partitioning and resource allocation for completion rate maximization of delay-aware DNN inference tasks in wireless powered mobile edge computing
Authors
Xianzhong Tian
Pengcheng Xu
Yifan Shen
Yuheng Shao
Publication date
20-09-2023
Publisher
Springer US
Published in
Peer-to-Peer Networking and Applications / Issue 6/2023
Print ISSN: 1936-6442
Electronic ISSN: 1936-6450
DOI
https://doi.org/10.1007/s12083-023-01564-z

Other articles of this Issue 6/2023

Peer-to-Peer Networking and Applications 6/2023 Go to the issue

Premium Partner