Skip to main content
Top
Published in: Artificial Life and Robotics 2/2022

19-02-2022 | Original Article

Joint failure recovery for snake robot locomotion using a shape-based approach

Authors: Belal A. Elsayed, Tatsuya Takemori, Fumitoshi Matsuno

Published in: Artificial Life and Robotics | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Snake robots have shown significant locomotion abilities in various challenging environments. Therefore, they are considered good candidates for search-and-rescue and inspection applications. Their expected working environment may cause the problem of actuator malfunction, which in turn leads to task failure. As actuator replacement or maintenance is not always possible in these difficult-to-reach environments, a control strategy that enables the robot to resume its motion (using the remaining actuators) is highly needed. In this paper, we introduce a shape-based recovery control approach for snake robots with joint failure. In the proposed method, the motion is recovered by restoring the overall desired shape of the robot via controlling the neighbor joints of the failed one. The controlled joints form a so-called recovery part which works to eliminate the effect caused by the failed joint. The recovery part restores the desired robot shape and thus allows the robot to carry on the desired motion. We derive recovery controllers considering locked-joint and free-joint failures. The approach is also extended to cover the double failure case, where two failed joints are considered during movement. The validity of the proposed method is verified in the simulation environment. We apply the recovery controller for several failure scenarios considering different locations of the failed joint. The results show the effectiveness of the proposed method to regain the robot shape and resume the locomotion desired.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Takemori T, Tanaka M, Matsuno F (2018) Gait design for a snake robot by connecting curve segments and experimental demonstration. IEEE Trans Rob 34(5):1384–1391CrossRef Takemori T, Tanaka M, Matsuno F (2018) Gait design for a snake robot by connecting curve segments and experimental demonstration. IEEE Trans Rob 34(5):1384–1391CrossRef
2.
go back to reference Rollinson D, Choset H (2016) Pipe network locomotion with a snake robot. J Field Robot 33(3):322–336CrossRef Rollinson D, Choset H (2016) Pipe network locomotion with a snake robot. J Field Robot 33(3):322–336CrossRef
4.
go back to reference Takemori T, Tanaka M, Matsuno F (2021) Hoop-passing motion for a snake robot to realize motion transition across different environments. IEEE Trans Rob 37(5):1696–1711CrossRef Takemori T, Tanaka M, Matsuno F (2021) Hoop-passing motion for a snake robot to realize motion transition across different environments. IEEE Trans Rob 37(5):1696–1711CrossRef
6.
go back to reference Li Z, Li C, Li S, Cao X (2019) A fault-tolerant method for motion planning of industrial redundant manipulator. IEEE Trans Industr Inf 16(12):7469–7478CrossRef Li Z, Li C, Li S, Cao X (2019) A fault-tolerant method for motion planning of industrial redundant manipulator. IEEE Trans Industr Inf 16(12):7469–7478CrossRef
7.
go back to reference Rayankula V, Pathak PM (2021) Fault tolerant control and reconfiguration of mobile manipulator. J Intell Rob Syst 101(2):1–18CrossRef Rayankula V, Pathak PM (2021) Fault tolerant control and reconfiguration of mobile manipulator. J Intell Rob Syst 101(2):1–18CrossRef
8.
go back to reference Yang JM (2002) Fault-tolerant gaits of quadruped robots for locked joint failures. IEEE Trans Syst Man Cybern Part C 32(4):507–516CrossRef Yang JM (2002) Fault-tolerant gaits of quadruped robots for locked joint failures. IEEE Trans Syst Man Cybern Part C 32(4):507–516CrossRef
9.
go back to reference Mehta V, Brennan S, Gandhi F (2008) Experimentally verified optimal serpentine gait and hyperredundancy of a rigid-link snake robot. IEEE Trans Rob 24(2):348–360CrossRef Mehta V, Brennan S, Gandhi F (2008) Experimentally verified optimal serpentine gait and hyperredundancy of a rigid-link snake robot. IEEE Trans Rob 24(2):348–360CrossRef
10.
go back to reference Irani R, Bauer R, North L, Nicholson M, Nolan D, West B (2015) Analysis of joint failures on the lateral undulation gait of a robotic snake. Trans Can Soc Mech Eng 39(2):253–268CrossRef Irani R, Bauer R, North L, Nicholson M, Nolan D, West B (2015) Analysis of joint failures on the lateral undulation gait of a robotic snake. Trans Can Soc Mech Eng 39(2):253–268CrossRef
11.
go back to reference Ariizumi R, Takahashi R, Tanaka M, Asai T (2018) Head-trajectory-tracking control of a snake robot and its robustness under actuator failure. IEEE Trans Control Syst Technol 27(6):2589–2597CrossRef Ariizumi R, Takahashi R, Tanaka M, Asai T (2018) Head-trajectory-tracking control of a snake robot and its robustness under actuator failure. IEEE Trans Control Syst Technol 27(6):2589–2597CrossRef
12.
go back to reference Ariizumi R, Koshio K, Tanaka M, Matsuno F (2020) Passive joint control of a snake robot by rolling motion. Artif Life Robot 25(4):503–512CrossRef Ariizumi R, Koshio K, Tanaka M, Matsuno F (2020) Passive joint control of a snake robot by rolling motion. Artif Life Robot 25(4):503–512CrossRef
13.
go back to reference Elsayed, Belal A, Takemori T, Matsuno F (2021) DARS-SWARM 2021. In: The 4th International Symposium on Swam Behavior and Bio-inspired Robotics, pp 547–558 Elsayed, Belal A, Takemori T, Matsuno F (2021) DARS-SWARM 2021. In: The 4th International Symposium on Swam Behavior and Bio-inspired Robotics, pp 547–558
14.
go back to reference Chan SK, Lawrence PD (1988) General inverse kinematics with the error damped pseudoinverse. In: Proceedings of 1988 IEEE International Conference on Robotics and Automation, pp 834-839 Chan SK, Lawrence PD (1988) General inverse kinematics with the error damped pseudoinverse. In: Proceedings of 1988 IEEE International Conference on Robotics and Automation, pp 834-839
15.
go back to reference Matsuno F, Mogi K (2000) Redundancy controllable system and control of snake robots based on kinematic model. Proc IEEE Conf Decis Control 5:4791–4796CrossRef Matsuno F, Mogi K (2000) Redundancy controllable system and control of snake robots based on kinematic model. Proc IEEE Conf Decis Control 5:4791–4796CrossRef
17.
go back to reference Hirose S, Mori M (2004) Biologically inspired snake-like robots. In: 2004 IEEE International Conference on Robotics and Biomimetics, pp 1–7 Hirose S, Mori M (2004) Biologically inspired snake-like robots. In: 2004 IEEE International Conference on Robotics and Biomimetics, pp 1–7
Metadata
Title
Joint failure recovery for snake robot locomotion using a shape-based approach
Authors
Belal A. Elsayed
Tatsuya Takemori
Fumitoshi Matsuno
Publication date
19-02-2022
Publisher
Springer Japan
Published in
Artificial Life and Robotics / Issue 2/2022
Print ISSN: 1433-5298
Electronic ISSN: 1614-7456
DOI
https://doi.org/10.1007/s10015-022-00742-1

Other articles of this Issue 2/2022

Artificial Life and Robotics 2/2022 Go to the issue