Skip to main content
Top
Published in: Wireless Networks 2/2019

22-09-2017

Joint signal detection and synchronization for OFDM based cognitive radio networks and its implementation

Authors: Manish Kumar, Sudhan Majhi

Published in: Wireless Networks | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the cooperative cognitive radio networks (CRN), often secondary user (SU) relays the information of primary user (PU) as a rewarding relay to improve diversity gain of PU without being a legitimate user. So the SU needs to detect the signal, blindly estimate the parameters introduced in channel and reconstruct the signal before relaying it to the primary receiver. In this paper, a joint scheme for signal detection and non-data-aided (blind) parameter estimation of orthogonal frequency division multiplexing (OFDM) based CRN has been discussed. Based upon binary hypothesis testing problem, the SU formulates a minimum cost signal detection scheme for the presence of OFDM based PU signal in CRN. The probability of detection, probability of false alarm and receiver operating characteristics have been presented to illustrate the performance of signal detection scheme in the CRN. Further, the effective throughput analysis of the secondary system has been demonstrated in the context when the primary system is detected as idle. Blind synchronous parameters of OFDM signal such as carrier frequency offset and symbol timing offset has been presented over the wireless fading channel in the CRN. Existing theoretical studies on blind parameter estimation algorithms for signals have been carried out but most of them have not been implemented in order to validate their feasibility. Here, a software-defined radio testbed has been implemented using national instruments hardware in a multipath indoor environment and experimental results have been provided using real measurement system. The preliminary measurement and simulation results demonstrate that the proposed blind estimator is capable of estimating the concerned parameters and constellation symbols over an indoor propagation environment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Axell, E., Leus, G., Larsson, E. G., & Poor, H. V. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Processing Magazine, 29(3), 101–116.CrossRef Axell, E., Leus, G., Larsson, E. G., & Poor, H. V. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Processing Magazine, 29(3), 101–116.CrossRef
2.
go back to reference Ghosh, C., Roy, S., & Cavalcanti, D. (2011). Coexistence challenges for heterogeneous cognitive wireless networks in TV white spaces. IEEE Wireless Communications, 18(4), 22–31.CrossRef Ghosh, C., Roy, S., & Cavalcanti, D. (2011). Coexistence challenges for heterogeneous cognitive wireless networks in TV white spaces. IEEE Wireless Communications, 18(4), 22–31.CrossRef
3.
go back to reference Zhang, Q., Jia, J., & Zhang, J. (2009). Cooperative relay to improve diversity in cognitive radio networks. IEEE Communications Magazine, 47(2), 111–117.CrossRef Zhang, Q., Jia, J., & Zhang, J. (2009). Cooperative relay to improve diversity in cognitive radio networks. IEEE Communications Magazine, 47(2), 111–117.CrossRef
4.
go back to reference Zhao, N., & Sun, H. (2011). Robust power control for cognitive radio in spectrum underlay networks. KSII Transactions on Internet & Information Systems, 5(7), 1214–1229.CrossRef Zhao, N., & Sun, H. (2011). Robust power control for cognitive radio in spectrum underlay networks. KSII Transactions on Internet & Information Systems, 5(7), 1214–1229.CrossRef
5.
go back to reference Cadambe, V. R., & Jafar, S. A. (2008). Interference alignment and degrees of freedom of the \(K\)-user interference channel. IEEE Transactions on Information Theory, 54(8), 3425–3441.MathSciNetCrossRefMATH Cadambe, V. R., & Jafar, S. A. (2008). Interference alignment and degrees of freedom of the \(K\)-user interference channel. IEEE Transactions on Information Theory, 54(8), 3425–3441.MathSciNetCrossRefMATH
6.
go back to reference Zhao, N., Yu, F. R., Sun, H., Nallanathan, A., & Yin, H. (2013). A novel interference alignment scheme based on sequential antenna switching in wireless networks. IEEE Transactions on Wireless Communications, 12(10), 5008–5021.CrossRef Zhao, N., Yu, F. R., Sun, H., Nallanathan, A., & Yin, H. (2013). A novel interference alignment scheme based on sequential antenna switching in wireless networks. IEEE Transactions on Wireless Communications, 12(10), 5008–5021.CrossRef
7.
go back to reference Zhao, N., Yu, F. R., Sun, H., Yin, H., Nallanathan, A., & Wang, G. (2015). Interference alignment with delayed channel state information and dynamic AR-model channel prediction in wireless networks. Wireless Networks, 21(4), 1227–1242.CrossRef Zhao, N., Yu, F. R., Sun, H., Yin, H., Nallanathan, A., & Wang, G. (2015). Interference alignment with delayed channel state information and dynamic AR-model channel prediction in wireless networks. Wireless Networks, 21(4), 1227–1242.CrossRef
8.
go back to reference Zhao, N., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference-alignment-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.CrossRef Zhao, N., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference-alignment-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.CrossRef
9.
go back to reference El Ayach, O., Peters, S. W., & Heath, R. W. (2013). The practical challenges of interference alignment. IEEE Wireless Communications, 20(1), 35–42.CrossRef El Ayach, O., Peters, S. W., & Heath, R. W. (2013). The practical challenges of interference alignment. IEEE Wireless Communications, 20(1), 35–42.CrossRef
10.
go back to reference Zhao, N., Yu, F. R., & Leung, V. C. M. (2015). Opportunistic communications in interference alignment networks with wireless power transfer. IEEE Wireless Communications, 22(1), 88–95.CrossRef Zhao, N., Yu, F. R., & Leung, V. C. M. (2015). Opportunistic communications in interference alignment networks with wireless power transfer. IEEE Wireless Communications, 22(1), 88–95.CrossRef
11.
go back to reference Li, X., Zhao, N., Sun, Y., & Yu, F. R. (2016). Interference alignment based on antenna selection with imperfect channel state information in cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(7), 5497–5511.CrossRef Li, X., Zhao, N., Sun, Y., & Yu, F. R. (2016). Interference alignment based on antenna selection with imperfect channel state information in cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(7), 5497–5511.CrossRef
12.
go back to reference Gao, F., Zhang, R., Liang, Y. C., & Wang, X. (2010). Design of learning-based MIMO cognitive radio systems. IEEE Transactions on Vehicular Technology, 59(4), 1707–1720.CrossRef Gao, F., Zhang, R., Liang, Y. C., & Wang, X. (2010). Design of learning-based MIMO cognitive radio systems. IEEE Transactions on Vehicular Technology, 59(4), 1707–1720.CrossRef
13.
go back to reference Xie, H., Wang, B., Gao, F., & Jin, S. (2016). A full-space spectrum-sharing strategy for massive MIMO cognitive radio systems. IEEE Journal on Selected Areas in Communications, 34(10), 2537–2549.CrossRef Xie, H., Wang, B., Gao, F., & Jin, S. (2016). A full-space spectrum-sharing strategy for massive MIMO cognitive radio systems. IEEE Journal on Selected Areas in Communications, 34(10), 2537–2549.CrossRef
14.
go back to reference van Nee, R., & Prasad, R. (2000). OFDM for wireless multimedia communications. Boston: Artech House. van Nee, R., & Prasad, R. (2000). OFDM for wireless multimedia communications. Boston: Artech House.
15.
go back to reference Sidhu, G. A. S., Gao, F., Wang, W., & Chen, W. (2013). Resource allocation in relay-aided OFDM cognitive radio networks. IEEE Transactions on Vehicular Technology, 62(8), 3700–3710.CrossRef Sidhu, G. A. S., Gao, F., Wang, W., & Chen, W. (2013). Resource allocation in relay-aided OFDM cognitive radio networks. IEEE Transactions on Vehicular Technology, 62(8), 3700–3710.CrossRef
16.
go back to reference Ali, A., & Hamouda, W. (2015). Spectrum monitoring using energy ratio algorithm for OFDM-based cognitive radio networks. IEEE Transactions on Wireless Communications, 14(4), 2257–2268.CrossRef Ali, A., & Hamouda, W. (2015). Spectrum monitoring using energy ratio algorithm for OFDM-based cognitive radio networks. IEEE Transactions on Wireless Communications, 14(4), 2257–2268.CrossRef
17.
go back to reference Jntti, J., Chaudhari, S., & Koivunen, V. (2015). Detection and classification of OFDM waveforms using cepstral analysis. IEEE Transactions on Signal Processing, 63(16), 4284–4299.MathSciNetCrossRefMATH Jntti, J., Chaudhari, S., & Koivunen, V. (2015). Detection and classification of OFDM waveforms using cepstral analysis. IEEE Transactions on Signal Processing, 63(16), 4284–4299.MathSciNetCrossRefMATH
18.
go back to reference Dikmese, S., Ilyas, Z., Sofotasios, P., Renfors, M., & Valkama, M. (2016). Novel frequency domain cyclic prefix autocorrelation based compressive spectrum sensing for cognitive radio. In 2016 IEEE 83rd vehicular technology conference (pp. 1–6). VTC Spring. Dikmese, S., Ilyas, Z., Sofotasios, P., Renfors, M., & Valkama, M. (2016). Novel frequency domain cyclic prefix autocorrelation based compressive spectrum sensing for cognitive radio. In 2016 IEEE 83rd vehicular technology conference (pp. 1–6). VTC Spring.
19.
go back to reference Shi, Z., McLernon, D., Ghogho, M., & Wu, Z. (2014). Improved spectrum sensing for OFDM cognitive radio in the presence of timing offset. EURASIP Journal on Wireless Communications and Networking, 2014(1), 224. doi:10.1186/1687-1499-2014-224.CrossRef Shi, Z., McLernon, D., Ghogho, M., & Wu, Z. (2014). Improved spectrum sensing for OFDM cognitive radio in the presence of timing offset. EURASIP Journal on Wireless Communications and Networking, 2014(1), 224. doi:10.​1186/​1687-1499-2014-224.CrossRef
20.
go back to reference Lei, Z., & Chin, F. (2008). OFDM signal sensing for cognitive radios. In 2008 IEEE 19th international symposium on personal, indoor and mobile radio communications (pp. 1–5). Lei, Z., & Chin, F. (2008). OFDM signal sensing for cognitive radios. In 2008 IEEE 19th international symposium on personal, indoor and mobile radio communications (pp. 1–5).
21.
go back to reference Chaudhari, S., Koivunen, V., & Poor, H. V. (2009). Autocorrelation-based decentralized sequential detection of OFDM signals in cognitive radios. IEEE Transactions on Signal Processing, 57(7), 2690–2700.MathSciNetCrossRefMATH Chaudhari, S., Koivunen, V., & Poor, H. V. (2009). Autocorrelation-based decentralized sequential detection of OFDM signals in cognitive radios. IEEE Transactions on Signal Processing, 57(7), 2690–2700.MathSciNetCrossRefMATH
22.
go back to reference Lei, Z., & Chin, F. P. S. (2010). Sensing OFDM systems under frequency-selective fading channels. IEEE Transactions on Vehicular Technology, 59(4), 1960–1968.CrossRef Lei, Z., & Chin, F. P. S. (2010). Sensing OFDM systems under frequency-selective fading channels. IEEE Transactions on Vehicular Technology, 59(4), 1960–1968.CrossRef
23.
go back to reference Speth, M., Fechtel, S., Fock, G., & Meyr, H. (2001). Optimum receiver design for OFDM-based broadband transmission. II. A case study. IEEE Transactions on Communications, 49(4), 571–578.CrossRef Speth, M., Fechtel, S., Fock, G., & Meyr, H. (2001). Optimum receiver design for OFDM-based broadband transmission. II. A case study. IEEE Transactions on Communications, 49(4), 571–578.CrossRef
24.
go back to reference Mostofi, Y., & Cox, D. (2006). Mathematical analysis of the impact of timing synchronization errors on the performance of an OFDM system. IEEE Transactions on Communications, 54(2), 226–230.CrossRef Mostofi, Y., & Cox, D. (2006). Mathematical analysis of the impact of timing synchronization errors on the performance of an OFDM system. IEEE Transactions on Communications, 54(2), 226–230.CrossRef
25.
go back to reference Filippi, A., & Serbetli, S. (2009). OFDM symbol synchronization using frequency domain pilots in time domain. IEEE Transactions on Wireless Communications, 8(6), 3240–3248.CrossRef Filippi, A., & Serbetli, S. (2009). OFDM symbol synchronization using frequency domain pilots in time domain. IEEE Transactions on Wireless Communications, 8(6), 3240–3248.CrossRef
26.
go back to reference Hsieh, H.-T., & Wu, W.-R. (2009). Maximum likelihood timing and carrier frequency offset estimation for OFDM systems with periodic preambles. IEEE Transactions on Vehicular Technology, 58(8), 4224–4237.CrossRef Hsieh, H.-T., & Wu, W.-R. (2009). Maximum likelihood timing and carrier frequency offset estimation for OFDM systems with periodic preambles. IEEE Transactions on Vehicular Technology, 58(8), 4224–4237.CrossRef
27.
go back to reference van de Beek, J.-J., Sandell, M., & Borjesson, P. (1997). ML estimation of time and frequency offset in OFDM systems. IEEE Transactions on Signal Processing, 45(7), 1800–1805.CrossRefMATH van de Beek, J.-J., Sandell, M., & Borjesson, P. (1997). ML estimation of time and frequency offset in OFDM systems. IEEE Transactions on Signal Processing, 45(7), 1800–1805.CrossRefMATH
28.
go back to reference Fusco, T., & Tanda, M. (2009). Blind synchronization for OFDM systems in multipath channels. IEEE Transactions on Wireless Communications, 8(3), 1340–1348.CrossRef Fusco, T., & Tanda, M. (2009). Blind synchronization for OFDM systems in multipath channels. IEEE Transactions on Wireless Communications, 8(3), 1340–1348.CrossRef
29.
go back to reference Chen, B., & Wang, H. (2004). Blind estimation of OFDM carrier frequency offset via oversampling. IEEE Transactions on Signal Processing, 52(7), 2047–2057.MathSciNetCrossRefMATH Chen, B., & Wang, H. (2004). Blind estimation of OFDM carrier frequency offset via oversampling. IEEE Transactions on Signal Processing, 52(7), 2047–2057.MathSciNetCrossRefMATH
30.
go back to reference Younis, S., Al-Dweik, A., Hazmi, A., Tsimenidis, C. C., & Sharif, B. S. (2010). Symbol timing offset estimation scheme for OFDM systems based on power difference measurements. In 21st Annual IEEE international symposium on personal, indoor and mobile radio communications (pp. 927–932). Younis, S., Al-Dweik, A., Hazmi, A., Tsimenidis, C. C., & Sharif, B. S. (2010). Symbol timing offset estimation scheme for OFDM systems based on power difference measurements. In 21st Annual IEEE international symposium on personal, indoor and mobile radio communications (pp. 927–932).
31.
go back to reference Jeon, H.-G., Kim, K.-S., & Serpedin, E. (2011). An efficient blind deterministic frequency offset estimator for OFDM systems. IEEE Transactions on Communications, 59(4), 1133–1141.CrossRef Jeon, H.-G., Kim, K.-S., & Serpedin, E. (2011). An efficient blind deterministic frequency offset estimator for OFDM systems. IEEE Transactions on Communications, 59(4), 1133–1141.CrossRef
32.
go back to reference Pan, Y. C., Phoong, S. M., & Lin, Y. P. (2014). An improved ESPRIT-based blind CFO estimation algorithm in OFDM systems. In 2014 48th Asilomar conference on signals, systems and computers (pp. 258–262). Pan, Y. C., Phoong, S. M., & Lin, Y. P. (2014). An improved ESPRIT-based blind CFO estimation algorithm in OFDM systems. In 2014 48th Asilomar conference on signals, systems and computers (pp. 258–262).
33.
go back to reference Liu, J. G., Wang, X., & Chouinard, J. Y. (2012). Iterative blind OFDM parameter estimation and synchronization for cognitive radio systems. In 2012 IEEE 75th vehicular technology conference (pp. 1–5). VTC Spring. Liu, J. G., Wang, X., & Chouinard, J. Y. (2012). Iterative blind OFDM parameter estimation and synchronization for cognitive radio systems. In 2012 IEEE 75th vehicular technology conference (pp. 1–5). VTC Spring.
34.
go back to reference Shaat, M., & Bader, F. (2012). Asymptotically optimal resource allocation in OFDM-based cognitive networks with multiple relays. IEEE Transactions on Wireless Communications, 11(3), 892–897.CrossRef Shaat, M., & Bader, F. (2012). Asymptotically optimal resource allocation in OFDM-based cognitive networks with multiple relays. IEEE Transactions on Wireless Communications, 11(3), 892–897.CrossRef
35.
go back to reference Majhi, S., & Ho, T. S. (2015). Blind symbol-rate estimation and test bed implementation of linearly modulated signals. IEEE Transactions on Vehicular Technology, 64(3), 954–963.CrossRef Majhi, S., & Ho, T. S. (2015). Blind symbol-rate estimation and test bed implementation of linearly modulated signals. IEEE Transactions on Vehicular Technology, 64(3), 954–963.CrossRef
36.
go back to reference Kumar, M., & Majhi, S. (2015). Blind synchronization of OFDM system and CRLB derivation of CFO over fading channels. In 2015 10th International conference on information, communications and signal processing (ICICS) (pp. 1–6). Kumar, M., & Majhi, S. (2015). Blind synchronization of OFDM system and CRLB derivation of CFO over fading channels. In 2015 10th International conference on information, communications and signal processing (ICICS) (pp. 1–6).
37.
go back to reference Majhi, S., Kumar, M., & Xiang, W. (2017). Implementation and measurement of blind wireless receiver for single carrier systems. IEEE Transactions on Instrumentation and Measurement, 66(8), 1965–1975.CrossRef Majhi, S., Kumar, M., & Xiang, W. (2017). Implementation and measurement of blind wireless receiver for single carrier systems. IEEE Transactions on Instrumentation and Measurement, 66(8), 1965–1975.CrossRef
38.
go back to reference Majhi, S., Gupta, R., Xiang, W., & Glisic, S. (2017). Hierarchical hypothesis and feature based blind modulation classification for linearly modulated signals. IEEE Transactions on Vehicular Technology, 99, 1–1. Majhi, S., Gupta, R., Xiang, W., & Glisic, S. (2017). Hierarchical hypothesis and feature based blind modulation classification for linearly modulated signals. IEEE Transactions on Vehicular Technology, 99, 1–1.
39.
go back to reference Majhi, S., Gupta, R., & Xiang, W. (2017). Novel blind modulation classification of circular and linearly modulated signals using cyclic cumulant. In 28th Annual IEEE international symposium on personal, indoor and mobile radio communications (pp. 1–6). Majhi, S., Gupta, R., & Xiang, W. (2017). Novel blind modulation classification of circular and linearly modulated signals using cyclic cumulant. In 28th Annual IEEE international symposium on personal, indoor and mobile radio communications (pp. 1–6).
41.
go back to reference Hyder, C. S., Al Islam, A. B. M. A., Xiao, L., & Torng, E. (2016). Interference aware reliable cooperative cognitive networks for real-time applications. IEEE Transactions on Cognitive Communications and Networking, 2(1), 53–67.CrossRef Hyder, C. S., Al Islam, A. B. M. A., Xiao, L., & Torng, E. (2016). Interference aware reliable cooperative cognitive networks for real-time applications. IEEE Transactions on Cognitive Communications and Networking, 2(1), 53–67.CrossRef
42.
go back to reference Kay, S. (1998). Fundamentlas of statistical signal processing, volume 2: Detection theory. Englewood: Prentice-Hall. Kay, S. (1998). Fundamentlas of statistical signal processing, volume 2: Detection theory. Englewood: Prentice-Hall.
43.
go back to reference Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.CrossRef Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.CrossRef
44.
go back to reference Chang, C.-S. (1994). Stability, queue length, and delay of deterministic and stochastic queueing networks. IEEE Transactions on Automatic Control, 39(5), 913–931.MathSciNetCrossRefMATH Chang, C.-S. (1994). Stability, queue length, and delay of deterministic and stochastic queueing networks. IEEE Transactions on Automatic Control, 39(5), 913–931.MathSciNetCrossRefMATH
Metadata
Title
Joint signal detection and synchronization for OFDM based cognitive radio networks and its implementation
Authors
Manish Kumar
Sudhan Majhi
Publication date
22-09-2017
Publisher
Springer US
Published in
Wireless Networks / Issue 2/2019
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-017-1586-y

Other articles of this Issue 2/2019

Wireless Networks 2/2019 Go to the issue