Skip to main content
Top

2022 | OriginalPaper | Chapter

Joint Use of Node Attributes and Proximity for Node Classification

Authors : Arpit Merchant, Michael Mathioudakis

Published in: Complex Networks & Their Applications X

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Node classification aims to infer unknown node labels from known labels and other node attributes. Standard approaches for this task assume homophily, whereby a node’s label is predicted from the labels of other nodes nearby in the network. However, there are also cases of networks where labels are better predicted from the individual attributes of each node rather than the labels of nearby nodes. Ideally, node classification methods should flexibly adapt to a range of settings wherein unknown labels are predicted either from labels of nearby nodes, or individual node attributes, or partly both. In this paper, we propose a principled approach, JANE, based on a generative probabilistic model that jointly weighs the role of attributes and node proximity via embeddings in predicting labels. Experiments on multiple network datasets demonstrate that JANE exhibits the desired combination of versatility and competitive performance compared to baselines.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)MathSciNetMATH Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)MathSciNetMATH
2.
go back to reference Blum, A., Lafferty, J., Rwebangira, M.R., Reddy, R.: Semi-supervised learning using randomized mincuts. In: Proceedings of the Twenty-First International Conference on Machine Learning, p. 13. ACM (2004) Blum, A., Lafferty, J., Rwebangira, M.R., Reddy, R.: Semi-supervised learning using randomized mincuts. In: Proceedings of the Twenty-First International Conference on Machine Learning, p. 13. ACM (2004)
3.
go back to reference Cong, W., Forsati, R., Kandemir, M., Mahdavi, M.: Minimal variance sampling with provable guarantees for fast training of graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1393–1403 (2020) Cong, W., Forsati, R., Kandemir, M., Mahdavi, M.: Minimal variance sampling with provable guarantees for fast training of graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1393–1403 (2020)
4.
go back to reference Gao, H., Huang, H.: Deep attributed network embedding. In: IJCAI (2018) Gao, H., Huang, H.: Deep attributed network embedding. In: IJCAI (2018)
5.
go back to reference Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 1025–1035 (2017) Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 1025–1035 (2017)
7.
go back to reference Huang, X., Li, J., Hu, X.: Accelerated attributed network embedding. In: Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 633–641. SIAM (2017) Huang, X., Li, J., Hu, X.: Accelerated attributed network embedding. In: Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 633–641. SIAM (2017)
8.
go back to reference Huang, X., Li, J., Hu, X.: Label informed attributed network embedding. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 731–739 (2017) Huang, X., Li, J., Hu, X.: Label informed attributed network embedding. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 731–739 (2017)
9.
go back to reference Joachims, T.: Transductive learning via spectral graph partitioning. In: Proceedings of the 20th International Conference on Machine Learning (ICML-2003), pp. 290–297 (2003) Joachims, T.: Transductive learning via spectral graph partitioning. In: Proceedings of the 20th International Conference on Machine Learning (ICML-2003), pp. 290–297 (2003)
10.
go back to reference Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (ICLR) (2017) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (ICLR) (2017)
11.
go back to reference Li, J., Hu, X., Tang, J., Liu, H.: Unsupervised streaming feature selection in social media. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management (2015) Li, J., Hu, X., Tang, J., Liu, H.: Unsupervised streaming feature selection in social media. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management (2015)
12.
go back to reference Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
13.
go back to reference Lorrain, F., White, H.C.: Structural equivalence of individuals in social networks. J. Math. Soc. 1(1), 49–80 (1971)CrossRef Lorrain, F., White, H.C.: Structural equivalence of individuals in social networks. J. Math. Soc. 1(1), 49–80 (1971)CrossRef
14.
go back to reference Marsden, P.V., Friedkin, N.E.: Network studies of social influence. Sociol. Methods Res. 22(1), 127–151 (1993)CrossRef Marsden, P.V., Friedkin, N.E.: Network studies of social influence. Sociol. Methods Res. 22(1), 127–151 (1993)CrossRef
15.
go back to reference McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Soc. 27(1), 415–444 (2001)CrossRef McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Soc. 27(1), 415–444 (2001)CrossRef
16.
go back to reference Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetMATH Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetMATH
17.
go back to reference Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014) Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)
18.
go back to reference Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., Tang, J.: Network embedding as matrix factorization: unifying deepwalk, Line, PTE, and node2vec. In: Proceedings of the eleventh ACM International Conference on Web Search and Data Mining, pp. 459–467 (2018) Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., Tang, J.: Network embedding as matrix factorization: unifying deepwalk, Line, PTE, and node2vec. In: Proceedings of the eleventh ACM International Conference on Web Search and Data Mining, pp. 459–467 (2018)
19.
go back to reference Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: struc2vec: learning node representations from structural identity. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 385–394. ACM (2017) Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: struc2vec: learning node representations from structural identity. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 385–394. ACM (2017)
20.
go back to reference Sailer, L.D.: Structural equivalence: meaning and definition, computation and application. Soc. Netw. 1(1), 73–90 (1978)CrossRef Sailer, L.D.: Structural equivalence: meaning and definition, computation and application. Soc. Netw. 1(1), 73–90 (1978)CrossRef
21.
go back to reference Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008) Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008)
22.
go back to reference Subramanian, A., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102(43), 15545–15550 (2005)CrossRef Subramanian, A., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102(43), 15545–15550 (2005)CrossRef
23.
go back to reference Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017) Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:​1710.​10903 (2017)
24.
25.
go back to reference Wang, X., Zhu, M., Bo, D., Cui, P., Shi, C., Pei, J.: AM-GCN: adaptive multi-channel graph convolutional networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1243–1253 (2020) Wang, X., Zhu, M., Bo, D., Cui, P., Shi, C., Pei, J.: AM-GCN: adaptive multi-channel graph convolutional networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1243–1253 (2020)
26.
go back to reference Wu, J., He, J., Xu, J.: Net: Degree-specific graph neural networks for node and graph classification. arXiv preprint arXiv:1906.02319 (2019) Wu, J., He, J., Xu, J.: Net: Degree-specific graph neural networks for node and graph classification. arXiv preprint arXiv:​1906.​02319 (2019)
27.
go back to reference Yang, Z., Cohen, W., Salakhudinov, R.: Revisiting semi-supervised learning with graph embeddings. In: International Conference on Machine Learning, pp. 40–48. PMLR (2016) Yang, Z., Cohen, W., Salakhudinov, R.: Revisiting semi-supervised learning with graph embeddings. In: International Conference on Machine Learning, pp. 40–48. PMLR (2016)
28.
go back to reference Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical graph representation learning with differentiable pooling. In: NeurIPS, pp. 4800–4810 (2018) Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical graph representation learning with differentiable pooling. In: NeurIPS, pp. 4800–4810 (2018)
30.
go back to reference Zhu, X., Goldberg, A.B.: Introduction to semi-supervised learning. Synth. Lect. Artif. Intell. Mach. Learn. 3(1), 1–130 (2009)MATH Zhu, X., Goldberg, A.B.: Introduction to semi-supervised learning. Synth. Lect. Artif. Intell. Mach. Learn. 3(1), 1–130 (2009)MATH
Metadata
Title
Joint Use of Node Attributes and Proximity for Node Classification
Authors
Arpit Merchant
Michael Mathioudakis
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-93413-2_43

Premium Partner