Skip to main content
Top
Published in: Quantum Information Processing 9/2018

01-09-2018

Kak’s three-stage protocol of secure quantum communication revisited: hitherto unknown strengths and weaknesses of the protocol

Authors: Kishore Thapliyal, Anirban Pathak

Published in: Quantum Information Processing | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Kak’s three-stage protocol for quantum key distribution is revisited with special focus on its hitherto unknown strengths and weaknesses. It is shown that this protocol can be used for secure direct quantum communication. Further, the implementability of this protocol in the realistic situation is analyzed by considering various Markovian noise models. It is found that the Kak’s protocol and its variants in their original form can be implemented only in a restricted class of noisy channels, where the protocols can be transformed to corresponding protocols based on logical qubits in decoherence free subspace. Specifically, it is observed that Kak’s protocol can be implemented in the presence of collective rotation and collective dephasing noise, but cannot be implemented in its original form in the presence of other types of noise, like amplitude and phase damping noise. Further, the performance of the protocol in the noisy environment is quantified by computing average fidelity under various noise models, and subsequently a set of preferred states for secure communication in noisy environment have also been identified.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The term “unconditional security” is frequently used in the literature of QKD assuming the devices used to implement are ideal and trustworthy.
 
2
Note that [24] contradicts the well-established results of Ref. [25] and the protocol reported [24] is not loophole free.
 
3
An alternative definition exists in the literature [38] according to which Kak’s scheme should be viewed as a scheme for deterministic QKD since it does not involve block transmission. However, a deterministic QKD scheme can be adapted to perform direct secure quantum communication if the sender encrypts the message with a randomly chosen private key before sending it to the receiver using deterministic QKD and revealing the key only when she ensures the secure transmission of ciphertext.
 
4
Here, it may be noted that although Kak’s protocol in its original form would not work under the CD noise, there are techniques to use logical qubits and thus to exploit the advantage of a decoherence free subspace to realize Kak’s protocol in presence of CD noise [54, 56], but no such decoherence free subspace is known for the AD and PD noise.
 
Literature
1.
go back to reference Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: International Conference on Computer System and Signal Processing, IEEE, pp. 175–179 (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: International Conference on Computer System and Signal Processing, IEEE, pp. 175–179 (1984)
6.
go back to reference Long, G.-L., Liu, X.-S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRef Long, G.-L., Liu, X.-S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRef
7.
go back to reference Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRef Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRef
8.
go back to reference Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRef Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRef
9.
go back to reference Degiovanni, I., Berchera, I.R., Castelletto, S., et al.: Quantum dense key distribution. Phys. Rev. A 69, 032310 (2004)ADSCrossRef Degiovanni, I., Berchera, I.R., Castelletto, S., et al.: Quantum dense key distribution. Phys. Rev. A 69, 032310 (2004)ADSCrossRef
10.
go back to reference Deng, F.-G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)ADSCrossRef Deng, F.-G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)ADSCrossRef
11.
go back to reference Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)ADSCrossRef Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)ADSCrossRef
12.
13.
go back to reference Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992)CrossRefMATH Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992)CrossRefMATH
14.
go back to reference Zhao, Y., Qi, B., Ma, X., Lo, H.-K., Qian, L.: Experimental quantum key distribution with decoy states. Phys. Rev. Lett. 96, 070502 (2006)ADSCrossRef Zhao, Y., Qi, B., Ma, X., Lo, H.-K., Qian, L.: Experimental quantum key distribution with decoy states. Phys. Rev. Lett. 96, 070502 (2006)ADSCrossRef
15.
go back to reference Schmitt-Manderbach, T., Weier, H., Fürst, M., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007)ADSCrossRef Schmitt-Manderbach, T., Weier, H., Fürst, M., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007)ADSCrossRef
16.
go back to reference Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photon. 8, 595 (2014)ADSCrossRef Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photon. 8, 595 (2014)ADSCrossRef
17.
go back to reference Hu, J.-Y., Yu, B., Jing, M.-Y., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)CrossRef Hu, J.-Y., Yu, B., Jing, M.-Y., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)CrossRef
18.
go back to reference Zhang, W., Ding, D.-S., Sheng, Y.-B., et al.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)ADSCrossRef Zhang, W., Ding, D.-S., Sheng, Y.-B., et al.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)ADSCrossRef
19.
go back to reference Zhu, F., Zhang, W., Sheng, Y., Huang, Y.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519–1524 (2017)CrossRef Zhu, F., Zhang, W., Sheng, Y., Huang, Y.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519–1524 (2017)CrossRef
20.
go back to reference Cao, Y., Li, Y.-H., Cao, Z., et al.: Direct counterfactual communication via quantum Zeno effect. Proc. Nat. Acad. Sci. 114, 4920–4924 (2017)ADSCrossRef Cao, Y., Li, Y.-H., Cao, Z., et al.: Direct counterfactual communication via quantum Zeno effect. Proc. Nat. Acad. Sci. 114, 4920–4924 (2017)ADSCrossRef
22.
go back to reference Mandal, S., Macdonald, G., El Rifai, M., et al.: Multi-photon implementation of three-stage quantum cryptography protocol. In: 2013 International Conference on Information Networking (ICOIN), IEEE, pp. 6–11 (2013) Mandal, S., Macdonald, G., El Rifai, M., et al.: Multi-photon implementation of three-stage quantum cryptography protocol. In: 2013 International Conference on Information Networking (ICOIN), IEEE, pp. 6–11 (2013)
23.
go back to reference Chan, K.W.C., El Rifai, M., Verma, P., Kak, S., Chen, Y.: Security analysis of the multi-photon three-stage quantum key distribution. Int. J. Cryptogr. Inf. Secur. 5, 3/4 (2015) Chan, K.W.C., El Rifai, M., Verma, P., Kak, S., Chen, Y.: Security analysis of the multi-photon three-stage quantum key distribution. Int. J. Cryptogr. Inf. Secur. 5, 3/4 (2015)
24.
go back to reference Parakh, A.: A quantum oblivious transfer protocol. In: SPIE Optical Engineering + Applications of International Society for Optics and Photonics, pp. 883204–883204 (2013) Parakh, A.: A quantum oblivious transfer protocol. In: SPIE Optical Engineering + Applications of International Society for Optics and Photonics, pp. 883204–883204 (2013)
25.
26.
go back to reference Kang, M.-S., Hong, C.-H., Heo, J., Lim, J.-I., Yang, H.-J.: Quantum signature scheme using a single qubit rotation operator. Int. J. Theor. Phys. 54, 614–629 (2015)MathSciNetCrossRefMATH Kang, M.-S., Hong, C.-H., Heo, J., Lim, J.-I., Yang, H.-J.: Quantum signature scheme using a single qubit rotation operator. Int. J. Theor. Phys. 54, 614–629 (2015)MathSciNetCrossRefMATH
28.
go back to reference El Rifai, M., Verma, P. K.: An IEEE 802.11 quantum handshake using the three-stage protocol. In: 2014 23rd International Conference on Computer Communication and Networks (ICCCN), IEEE, pp. 1–6 (2014) El Rifai, M., Verma, P. K.: An IEEE 802.11 quantum handshake using the three-stage protocol. In: 2014 23rd International Conference on Computer Communication and Networks (ICCCN), IEEE, pp. 1–6 (2014)
29.
31.
go back to reference El Rifai, M., Punekar, N., Verma, P. K.: Implementation of an m-ary three-stage quantum cryptography protocol. In: Quantum Communications and Quantum Imaging XI vol. 8875, International Society for Optics and Photonics, p. 88750S (2013) El Rifai, M., Punekar, N., Verma, P. K.: Implementation of an m-ary three-stage quantum cryptography protocol. In: Quantum Communications and Quantum Imaging XI vol. 8875, International Society for Optics and Photonics, p. 88750S (2013)
32.
go back to reference Darunkar, B., Verma, P. K.: The braided single-stage protocol for quantum secure communication. In: Quantum Information and Computation XII, vol. 9123, International Society for Optics and Photonics, p. 912308 (2014) Darunkar, B., Verma, P. K.: The braided single-stage protocol for quantum secure communication. In: Quantum Information and Computation XII, vol. 9123, International Society for Optics and Photonics, p. 912308 (2014)
33.
go back to reference Wu, L., Chen, Y.: Three-stage quantum cryptography protocol under collective-rotation noise. Entropy 17, 2919–2931 (2015)ADSCrossRef Wu, L., Chen, Y.: Three-stage quantum cryptography protocol under collective-rotation noise. Entropy 17, 2919–2931 (2015)ADSCrossRef
34.
go back to reference Parakh, A., Van Brandwijk, J.: Correcting rotational errors in three stage QKD. In: 2016 23rd International Conference on Telecommunications (ICT), IEEE, pp. 1–5 (2016) Parakh, A., Van Brandwijk, J.: Correcting rotational errors in three stage QKD. In: 2016 23rd International Conference on Telecommunications (ICT), IEEE, pp. 1–5 (2016)
36.
go back to reference Pathak, A.: Elements of Quantum Computation and Quantum Communication. Taylor & Francis, New York (2013)MATH Pathak, A.: Elements of Quantum Computation and Quantum Communication. Taylor & Francis, New York (2013)MATH
37.
go back to reference Shukla, C., Banerjee, A., Pathak, A.: Improved protocols of secure quantum communication using W states. Int. J. Theor. Phys. 52, 1914–1924 (2013)MathSciNetCrossRef Shukla, C., Banerjee, A., Pathak, A.: Improved protocols of secure quantum communication using W states. Int. J. Theor. Phys. 52, 1914–1924 (2013)MathSciNetCrossRef
38.
go back to reference Long, G.-L., Deng, F.-G., Wang, C., et al.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251–272 (2007)ADSCrossRef Long, G.-L., Deng, F.-G., Wang, C., et al.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251–272 (2007)ADSCrossRef
39.
go back to reference Yang, Y-y: A quantum secure direct communication protocol without quantum memories. Int. J. Theor. Phys. 53, 2216–2221 (2014)MathSciNetCrossRef Yang, Y-y: A quantum secure direct communication protocol without quantum memories. Int. J. Theor. Phys. 53, 2216–2221 (2014)MathSciNetCrossRef
40.
go back to reference Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches. Quantum Inf. Process. 14, 2195–2210 (2015)ADSMathSciNetCrossRefMATH Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches. Quantum Inf. Process. 14, 2195–2210 (2015)ADSMathSciNetCrossRefMATH
41.
go back to reference Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599–2616 (2015)ADSMathSciNetCrossRefMATH Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599–2616 (2015)ADSMathSciNetCrossRefMATH
42.
go back to reference Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16, 49 (2017)ADSMathSciNetCrossRefMATH Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16, 49 (2017)ADSMathSciNetCrossRefMATH
44.
go back to reference Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)ADSMathSciNetCrossRefMATH Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)ADSMathSciNetCrossRefMATH
45.
go back to reference Thapliyal, K., Sharma, R.D., Pathak, A.: Protocols for quantum binary voting. Int. J. Quantum Inf. 15, 1750007 (2017)CrossRefMATH Thapliyal, K., Sharma, R.D., Pathak, A.: Protocols for quantum binary voting. Int. J. Quantum Inf. 15, 1750007 (2017)CrossRefMATH
46.
go back to reference Sharma, R.D., Thapliyal, K., Pathak, A.: Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement. Quantum Inf. Process. 16, 169 (2017)ADSCrossRefMATH Sharma, R.D., Thapliyal, K., Pathak, A.: Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement. Quantum Inf. Process. 16, 169 (2017)ADSCrossRefMATH
47.
go back to reference Thapliyal, K., Sharma, R. D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. arXiv preprint arXiv:1608.00101 (2016) Thapliyal, K., Sharma, R. D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. arXiv preprint arXiv:​1608.​00101 (2016)
48.
go back to reference Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)MATH Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)MATH
49.
go back to reference Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRefMATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRefMATH
50.
go back to reference Preskill, J.: Lecture notes for physics 229: quantum information and computation. Calif. Inst. Technol. 12, 14 (1998) Preskill, J.: Lecture notes for physics 229: quantum information and computation. Calif. Inst. Technol. 12, 14 (1998)
51.
go back to reference Thapliyal, K., Banerjee, S., Pathak, A., Omkar, S., Ravishankar, V.: Quasiprobability distributions in open quantum systems: spin-qubit systems. Ann. Phys. 362, 261–286 (2015)ADSMathSciNetCrossRefMATH Thapliyal, K., Banerjee, S., Pathak, A., Omkar, S., Ravishankar, V.: Quasiprobability distributions in open quantum systems: spin-qubit systems. Ann. Phys. 362, 261–286 (2015)ADSMathSciNetCrossRefMATH
52.
53.
go back to reference Bourennane, M., Eibl, M., Gaertner, S., et al.: Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92, 107901 (2004)ADSCrossRef Bourennane, M., Eibl, M., Gaertner, S., et al.: Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92, 107901 (2004)ADSCrossRef
54.
go back to reference Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703–1718 (2016)ADSMathSciNetCrossRefMATH Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703–1718 (2016)ADSMathSciNetCrossRefMATH
55.
go back to reference Fischer, D.G., Mack, H., Cirone, M.A., Freyberger, M.: Enhanced estimation of a noisy quantum channel using entanglement. Phys. Rev. A 64, 022309 (2001)ADSCrossRef Fischer, D.G., Mack, H., Cirone, M.A., Freyberger, M.: Enhanced estimation of a noisy quantum channel using entanglement. Phys. Rev. A 64, 022309 (2001)ADSCrossRef
56.
go back to reference Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)ADSCrossRef Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)ADSCrossRef
58.
go back to reference Boileau, J.C., Gottesman, D., Laflamme, R., Poulin, D., Spekkens, R.W.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92, 017901 (2004)ADSCrossRef Boileau, J.C., Gottesman, D., Laflamme, R., Poulin, D., Spekkens, R.W.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92, 017901 (2004)ADSCrossRef
59.
go back to reference Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15, 4681–4710 (2016)ADSMathSciNetCrossRefMATH Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15, 4681–4710 (2016)ADSMathSciNetCrossRefMATH
Metadata
Title
Kak’s three-stage protocol of secure quantum communication revisited: hitherto unknown strengths and weaknesses of the protocol
Authors
Kishore Thapliyal
Anirban Pathak
Publication date
01-09-2018
Publisher
Springer US
Published in
Quantum Information Processing / Issue 9/2018
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-018-2001-z

Other articles of this Issue 9/2018

Quantum Information Processing 9/2018 Go to the issue