Skip to main content
Top
Published in: Journal of Iron and Steel Research International 3/2023

10-02-2023 | Original Paper

Kinetic study on microwave-enhanced direct reduction of titanomagnetite concentrate with coal

Authors: Peng Liu, Si-yu Gong, Yu-wen Chao, Bing-guo Liu, Li-bo Zhang, En-hui Wu

Published in: Journal of Iron and Steel Research International | Issue 3/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Titanomagnetite concentrate is one of the important titanium resources. The apparent activation energy (\({E}_{\mathrm{a}}\)) of the direct reduction of titanomagnetite concentrate was composed of two parts (average activation energy: \({\overline{E} }_{\mathrm{a}}={\overline{E} }_{\mathrm{a}-\mathrm{L}}+{E}_{\mathrm{a}-\mathrm{Step }1}\), where \({E}_{\mathrm{a}-\mathrm{L}}\) is the lattice energy of titanomagnetite concentrate, and \({E}_{\mathrm{a}-\mathrm{Step\ }1}\) is the activation energy of step 1 for the reduction of titanomagnetite concentrate in the route of Fe3+ \(\mathop{\longrightarrow}\limits^{\rm{Step}1}\) Fe2+ \(\mathop{\longrightarrow}\limits^{\rm{Step}2}\) Fe2O2+ \(\mathop{\longrightarrow}\limits^{\rm{Step}3}\) Fe0). \({\overline{E} }_{\mathrm{a}}\) (583.43 kJ/mol), \({\overline{E} }_{\mathrm{a}-\mathrm{L}}\) (426.4 kJ/mol), and \({E}_{\mathrm{a}-\mathrm{Step}1}\) (157.0 kJ/mol) were calculated by the model-free methods based on thermogravimetry and Dmol3 module. Combined with the analysis of activation energy fluctuation and the shifting trend of related mechanism functions, the reduction kinetic system with three main characteristics, namely nucleation, diffusion and concentration fluctuation, was established. In addition, the scanning electron microscopy comparison analysis of the samples from microwave reduction and conventional reduction shows that microwave heating could realize the microstructure Ti–Fe separation and reduce the lattice energy of the titanomagnetite concentrate, thus enhancing the reduction process by 7.68% from the perspective of activation energy.

Graphical abstract

Literature
[1]
go back to reference M.H. Lee, Y. Kalcheim, J. del Valle, I.K. Schuller, ACS Appl. Mater. Interfaces 13 (2021) 887–896.CrossRef M.H. Lee, Y. Kalcheim, J. del Valle, I.K. Schuller, ACS Appl. Mater. Interfaces 13 (2021) 887–896.CrossRef
[2]
go back to reference J. Ye, D. Yuan, M. Ding, Y. Long, T. Long, L. Sun, C. Jia, J. Power Sources 482 (2021) 229032.CrossRef J. Ye, D. Yuan, M. Ding, Y. Long, T. Long, L. Sun, C. Jia, J. Power Sources 482 (2021) 229032.CrossRef
[3]
go back to reference Q. Sun, M. Li, X.L. Shi, S.D. Xu, W.D. Liu, M. Hong, W.Y. Lyu, Y. Yin, M. Dargusch, J. Zou, Z.G. Chen, Adv. Energy Mater. 11 (2021) 2100544.CrossRef Q. Sun, M. Li, X.L. Shi, S.D. Xu, W.D. Liu, M. Hong, W.Y. Lyu, Y. Yin, M. Dargusch, J. Zou, Z.G. Chen, Adv. Energy Mater. 11 (2021) 2100544.CrossRef
[4]
go back to reference N. Kesharwani, N. Chaudhary, C. Haldar, Catal. Lett. 151 (2021) 3562–3581.CrossRef N. Kesharwani, N. Chaudhary, C. Haldar, Catal. Lett. 151 (2021) 3562–3581.CrossRef
[5]
[7]
go back to reference R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269–271.CrossRef R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269–271.CrossRef
[8]
go back to reference X. Nie, W. He, S. Zang, X. Wang, J. Zhao, Surf. Coat. Technol. 253 (2014) 68–75.CrossRef X. Nie, W. He, S. Zang, X. Wang, J. Zhao, Surf. Coat. Technol. 253 (2014) 68–75.CrossRef
[9]
go back to reference Y. Xie, W. Zhai, L. Chen, J. Chang, X. Zheng, C. Ding, Acta Biomater. 5 (2009) 2331–2337.CrossRef Y. Xie, W. Zhai, L. Chen, J. Chang, X. Zheng, C. Ding, Acta Biomater. 5 (2009) 2331–2337.CrossRef
[10]
go back to reference L. Benea, E. Mardare-Danaila, M. Mardare, J.P. Celis, Corros. Sci. 80 (2014) 331–338.CrossRef L. Benea, E. Mardare-Danaila, M. Mardare, J.P. Celis, Corros. Sci. 80 (2014) 331–338.CrossRef
[11]
go back to reference H. Sun, A. Ajala, Z. Wang, F. Pan, Q. Zhu, in: Seminar on Clean Utilization of Non-ferrous Metals Resources and Energy Conservation and Emission Reduction, The Nonferrous Metals Society of China, Kunming, China, 2016, pp. 15–19. H. Sun, A. Ajala, Z. Wang, F. Pan, Q. Zhu, in: Seminar on Clean Utilization of Non-ferrous Metals Resources and Energy Conservation and Emission Reduction, The Nonferrous Metals Society of China, Kunming, China, 2016, pp. 15–19.
[12]
[13]
go back to reference M. Zhou, T. Jiang, S. Yang, X. Xue, Int. J. Miner. Process. 142 (2015) 125–133.CrossRef M. Zhou, T. Jiang, S. Yang, X. Xue, Int. J. Miner. Process. 142 (2015) 125–133.CrossRef
[14]
go back to reference Z. Yu, G. Li, T. Jiang, Y. Zhang, F. Zhou, Z. Peng, ISIJ Int. 55 (2015) 907–909.CrossRef Z. Yu, G. Li, T. Jiang, Y. Zhang, F. Zhou, Z. Peng, ISIJ Int. 55 (2015) 907–909.CrossRef
[15]
go back to reference D. Chen, H. Zhao, G. Hu, T. Qi, H. Yu, G. Zhang, L. Wang, W. Wang, J. Hazard. Mater. 294 (2015) 35–40.CrossRef D. Chen, H. Zhao, G. Hu, T. Qi, H. Yu, G. Zhang, L. Wang, W. Wang, J. Hazard. Mater. 294 (2015) 35–40.CrossRef
[16]
go back to reference S. Wang, Y.F. Guo, T. Jiang, F. Chen, F.Q. Zheng, China Metallurgy 26 (2016) No. 10, 40–44. S. Wang, Y.F. Guo, T. Jiang, F. Chen, F.Q. Zheng, China Metallurgy 26 (2016) No. 10, 40–44.
[17]
go back to reference W. Yu, X. Wen, J. Chen, J. Kuang, Q. Tang, Y. Tian, J. Fu, W. Huang, T. Qiu, Minerals 7 (2017) 220.CrossRef W. Yu, X. Wen, J. Chen, J. Kuang, Q. Tang, Y. Tian, J. Fu, W. Huang, T. Qiu, Minerals 7 (2017) 220.CrossRef
[18]
go back to reference P. Liu, L. Zhang, B. Liu, G. He, J. Peng, M. Huang, Int. J. Miner. Metall. Mater. 28 (2021) 88–97.CrossRef P. Liu, L. Zhang, B. Liu, G. He, J. Peng, M. Huang, Int. J. Miner. Metall. Mater. 28 (2021) 88–97.CrossRef
[19]
[20]
[21]
go back to reference S. Wang, Y. Guo, T. Jiang, L. Yang, F. Chen, F. Zheng, X. Xie, M. Tang, JOM 69 (2017) 1646–1653.CrossRef S. Wang, Y. Guo, T. Jiang, L. Yang, F. Chen, F. Zheng, X. Xie, M. Tang, JOM 69 (2017) 1646–1653.CrossRef
[22]
go back to reference S. Wang, Y. Guo, T. Jiang, F. Chen, F. Zheng, M. Tang, L. Yang, G. Qiu, Trans. Nonferrous Met. Soc. China 28 (2018) 2528–2537.CrossRef S. Wang, Y. Guo, T. Jiang, F. Chen, F. Zheng, M. Tang, L. Yang, G. Qiu, Trans. Nonferrous Met. Soc. China 28 (2018) 2528–2537.CrossRef
[23]
[24]
[25]
go back to reference D. Chen, B. Song, L. Wang, T. Qi, Y. Wang, W. Wang, Miner. Eng. 24 (2011) 864–869.CrossRef D. Chen, B. Song, L. Wang, T. Qi, Y. Wang, W. Wang, Miner. Eng. 24 (2011) 864–869.CrossRef
[26]
go back to reference D. Huang, New process and comparative study of utilization of vanadium-titanium magnetite, Central South University, Changsha, China, 2011. D. Huang, New process and comparative study of utilization of vanadium-titanium magnetite, Central South University, Changsha, China, 2011.
[27]
go back to reference A.A. Adetoro, H. Sun, S. He, Q. Zhu, H. Li, Metall. Mater. Trans. B 49 (2018) 846–857.CrossRef A.A. Adetoro, H. Sun, S. He, Q. Zhu, H. Li, Metall. Mater. Trans. B 49 (2018) 846–857.CrossRef
[28]
[29]
go back to reference E. Cruz-Sánchez, J.F. Álvarez-Castro, J.A. Ramirez Picado, J.A. Matutes-Aquino, J. Alloy. Compd. 369 (2004) 265–268.CrossRef E. Cruz-Sánchez, J.F. Álvarez-Castro, J.A. Ramirez Picado, J.A. Matutes-Aquino, J. Alloy. Compd. 369 (2004) 265–268.CrossRef
[30]
[31]
go back to reference M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257 (2011) 2717–2730.CrossRef M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257 (2011) 2717–2730.CrossRef
[32]
go back to reference H.Z. Zhang, Nonferrous Metals 46 (1994) No. 1, 41–44. H.Z. Zhang, Nonferrous Metals 46 (1994) No. 1, 41–44.
[33]
go back to reference P.M. Guo, P. Zhao, J. Iron Steel Res. 19 (2007) No. 5, 25–28+33. P.M. Guo, P. Zhao, J. Iron Steel Res. 19 (2007) No. 5, 25–28+33.
[34]
go back to reference P. Liu, C. Liu, T. Hu, J. Shi, L. Zhang, B. Liu, J. Peng, Chem. Eng. J. 408 (2021) 127355.CrossRef P. Liu, C. Liu, T. Hu, J. Shi, L. Zhang, B. Liu, J. Peng, Chem. Eng. J. 408 (2021) 127355.CrossRef
[37]
[40]
go back to reference S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, Thermochim. Acta 520 (2011) 1–19.CrossRef S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, Thermochim. Acta 520 (2011) 1–19.CrossRef
[41]
go back to reference S. Vyazovkin, K. Chrissafis, M.L. Di Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, J.J. Suñol, Thermochim. Acta 590 (2014) 1–23.CrossRef S. Vyazovkin, K. Chrissafis, M.L. Di Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, J.J. Suñol, Thermochim. Acta 590 (2014) 1–23.CrossRef
[42]
go back to reference I. Oluwoye, Z. Zeng, S. Mosallanejad, M. Altarawneh, J. Gore, B.Z. Dlugogorski, Chem. Eng. J. 411 (2021) 128427.CrossRef I. Oluwoye, Z. Zeng, S. Mosallanejad, M. Altarawneh, J. Gore, B.Z. Dlugogorski, Chem. Eng. J. 411 (2021) 128427.CrossRef
[43]
go back to reference P. Liu, C. Liu, S. Li, B. Liu, J. Shi, L. Zhang, J. Peng, Environ. Prog. Sustain. Energy 38 (2019) 13201.CrossRef P. Liu, C. Liu, S. Li, B. Liu, J. Shi, L. Zhang, J. Peng, Environ. Prog. Sustain. Energy 38 (2019) 13201.CrossRef
[45]
go back to reference C. Liu, J. Peng, A. Ma, L. Zhang, J. Li, J. Hazard. Mater. 322 (2017) 325–333.CrossRef C. Liu, J. Peng, A. Ma, L. Zhang, J. Li, J. Hazard. Mater. 322 (2017) 325–333.CrossRef
Metadata
Title
Kinetic study on microwave-enhanced direct reduction of titanomagnetite concentrate with coal
Authors
Peng Liu
Si-yu Gong
Yu-wen Chao
Bing-guo Liu
Li-bo Zhang
En-hui Wu
Publication date
10-02-2023
Publisher
Springer Nature Singapore
Published in
Journal of Iron and Steel Research International / Issue 3/2023
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-022-00888-z

Other articles of this Issue 3/2023

Journal of Iron and Steel Research International 3/2023 Go to the issue

Premium Partners