Skip to main content
Top

2017 | OriginalPaper | Chapter

18. Kinetics of Fast Redox Systems for Energy Storage

Author : Rudolf Holze

Published in: Springer Handbook of Electrochemical Energy

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Flow batteries (also: redox batteries or redox flow batteries RFB) are introduced as systems for conversion and storage of electrical energy into chemical energy. Their position in the wide range of systems and processes for energy conversion and storage is outlined. Special attention in the discussion of current trends and developments is paid to enhanced electrocatalysis of the electrode processes inside these devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Y. Wu, R. Holze: Electrochemical Energy Storage and Conversion (Wiley-VCH, Weinheim 2013) Y. Wu, R. Holze: Electrochemical Energy Storage and Conversion (Wiley-VCH, Weinheim 2013)
[2]
go back to reference N. Chouhan, R.-S. Liu: Electrochemical technologies for energy storage and conversion. In: Electrochemical Technologies for Energy Storage and Conversion, ed. by R.S. Liu, L. Zhang, X. Sun, H. Liu, J. Zhang (Wiley-VCH, Weinheim 2012) N. Chouhan, R.-S. Liu: Electrochemical technologies for energy storage and conversion. In: Electrochemical Technologies for Energy Storage and Conversion, ed. by R.S. Liu, L. Zhang, X. Sun, H. Liu, J. Zhang (Wiley-VCH, Weinheim 2012)
[3]
go back to reference J. Garche, L. Jörissen: Elektrochemische Stromquellen mit externem Speicher, GDCh-Monographie 9, 63–72 (1996) J. Garche, L. Jörissen: Elektrochemische Stromquellen mit externem Speicher, GDCh-Monographie 9, 63–72 (1996)
[4]
go back to reference Terminology is confusing, these devices are also called redox batteries or redox flow batteries. Terminology is confusing, these devices are also called redox batteries or redox flow batteries.
[5]
go back to reference B.E. Conway: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, New York 1999)CrossRef B.E. Conway: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, New York 1999)CrossRef
[6]
go back to reference A. Yu, A. Davies, Z. Chen: Electrochemical supercapacitors. In: Electrochemical Technologies for Energy Storage and Conversion, ed. by R.S. Liu, L. Zhang, X. Sun, H. Liu, J. Zhang (Wiley-VCH, Weinheim 2012) p. 317CrossRef A. Yu, A. Davies, Z. Chen: Electrochemical supercapacitors. In: Electrochemical Technologies for Energy Storage and Conversion, ed. by R.S. Liu, L. Zhang, X. Sun, H. Liu, J. Zhang (Wiley-VCH, Weinheim 2012) p. 317CrossRef
[7]
go back to reference M. Skyllas-Kazacos, M.H. Chakrabarti, S.A. Hajimolana, F.S. Mjalli, M. Saleem: Progress in flow battery research and development, J. Electrochem. Soc. 158, R55–R79 (2011)CrossRef M. Skyllas-Kazacos, M.H. Chakrabarti, S.A. Hajimolana, F.S. Mjalli, M. Saleem: Progress in flow battery research and development, J. Electrochem. Soc. 158, R55–R79 (2011)CrossRef
[8]
go back to reference M.J. Watt-Smith, R.G.A. Wills, F.C. Walsh: Secondary batteries - flow systems -- Overview. In: Encyclopedia of Electrochemical Power Sources, Vol. 5, ed. by J. Garche, C.K. Dyer, P.T. Moseley, Z. Ogumi, D.A.J. Rand, B. Scrosati (Elsevier, Amsterdam 2009) p. 438CrossRef M.J. Watt-Smith, R.G.A. Wills, F.C. Walsh: Secondary batteries - flow systems -- Overview. In: Encyclopedia of Electrochemical Power Sources, Vol. 5, ed. by J. Garche, C.K. Dyer, P.T. Moseley, Z. Ogumi, D.A.J. Rand, B. Scrosati (Elsevier, Amsterdam 2009) p. 438CrossRef
[9]
go back to reference M. Skyllas-Kazacos: Secondary batteries - flow systems: Vanadium redox-flow batteries. In: Encyclopedia of Electrochemical Power Sources, Vol. 5, ed. by J. Garche, C.K. Dyer, P.T. Moseley, Z. Ogumi, D.A.J. Rand, B. Scrosati (Elsevier, Amsterdam 2009) p. 444CrossRef M. Skyllas-Kazacos: Secondary batteries - flow systems: Vanadium redox-flow batteries. In: Encyclopedia of Electrochemical Power Sources, Vol. 5, ed. by J. Garche, C.K. Dyer, P.T. Moseley, Z. Ogumi, D.A.J. Rand, B. Scrosati (Elsevier, Amsterdam 2009) p. 444CrossRef
[10]
go back to reference A.Z. Weber, M.M. Mench, J.P. Meyers, P.N. Ross, J.T. Gostick, Q. Liu: Redox flow batteries: A review, J. Appl. Electrochem. 41, 1137–1164 (2011)CrossRef A.Z. Weber, M.M. Mench, J.P. Meyers, P.N. Ross, J.T. Gostick, Q. Liu: Redox flow batteries: A review, J. Appl. Electrochem. 41, 1137–1164 (2011)CrossRef
[11]
go back to reference T. Shigematsu: Redox flow battery for energy storage, SEI Tech. Rev. 73, 4–13 (2011) T. Shigematsu: Redox flow battery for energy storage, SEI Tech. Rev. 73, 4–13 (2011)
[12]
go back to reference T. Nguyen, R.F. Savinell: Flow Batteries, Interface 19(3), 54–56 (2010) T. Nguyen, R.F. Savinell: Flow Batteries, Interface 19(3), 54–56 (2010)
[13]
go back to reference V. Presser, C.R. Dennison, J. Campos, K.W. Knehr, E.C. Kumbur, Y. Gogotsi: The electrochemical flow capacitor: A new concept for rapid energy storage and recovery, Adv. Energy Mater. 2, 895–902 (2012)CrossRef V. Presser, C.R. Dennison, J. Campos, K.W. Knehr, E.C. Kumbur, Y. Gogotsi: The electrochemical flow capacitor: A new concept for rapid energy storage and recovery, Adv. Energy Mater. 2, 895–902 (2012)CrossRef
[14]
go back to reference S. Hamelet, T. Tzedakis, J.-B. Leriche, S. Sailler, D. Larcher, P.-L. Taberna, P. Simon, J.-M. Tarascon: Non-aqueous Li-based redox flow batteries, J. Electrochem. Soc. 159, A1360–A1367 (2012)CrossRef S. Hamelet, T. Tzedakis, J.-B. Leriche, S. Sailler, D. Larcher, P.-L. Taberna, P. Simon, J.-M. Tarascon: Non-aqueous Li-based redox flow batteries, J. Electrochem. Soc. 159, A1360–A1367 (2012)CrossRef
[15]
go back to reference Q. Huang, H. Li, M. Grätzel, Q. Wang: Reversible chemical delithiation/lithiation of LiFePO4: Towards a redox flow lithium-ion battery, Phys. Chem. Chem. Phys. 15, 1793–1797 (2013)CrossRef Q. Huang, H. Li, M. Grätzel, Q. Wang: Reversible chemical delithiation/lithiation of LiFePO4: Towards a redox flow lithium-ion battery, Phys. Chem. Chem. Phys. 15, 1793–1797 (2013)CrossRef
[16]
go back to reference M. Zhang, M. Moore, J.S. Watson, T.A. Zawodzinski, R.M. Counce: Capital cost sensitivity analysis of an all-vanadium redox-flow battery, J. Electrochem. Soc. 159, A1183–A1188 (2012)CrossRef M. Zhang, M. Moore, J.S. Watson, T.A. Zawodzinski, R.M. Counce: Capital cost sensitivity analysis of an all-vanadium redox-flow battery, J. Electrochem. Soc. 159, A1183–A1188 (2012)CrossRef
[17]
go back to reference W. Kangro: Verfahren zur Speicherung von elektrischer Energie, German Patent 914264 (1949) W. Kangro: Verfahren zur Speicherung von elektrischer Energie, German Patent 914264 (1949)
[18]
go back to reference W. Kangro, H. Pieper: Zur Frage der Speicherung von Elektrischer Energie in Flüssigkeiten, Electrochim. Acta 7, 435–448 (1962)CrossRef W. Kangro, H. Pieper: Zur Frage der Speicherung von Elektrischer Energie in Flüssigkeiten, Electrochim. Acta 7, 435–448 (1962)CrossRef
[19]
go back to reference L.H. Thaller: Electrically rechargeable redox flow cells, Proc. 9th Intersoc. Energy Convers. Eng. Conf. (1974) pp. 924–928 L.H. Thaller: Electrically rechargeable redox flow cells, Proc. 9th Intersoc. Energy Convers. Eng. Conf. (1974) pp. 924–928
[20]
go back to reference N.H. Hagedorn, L.H. Thaller: Redox storage systems for solar applications, J. Power Sources 8, 227–243 (1981) N.H. Hagedorn, L.H. Thaller: Redox storage systems for solar applications, J. Power Sources 8, 227–243 (1981)
[21]
go back to reference M. Bartolozzi: Development of redox flow batteries. A historical bibliography, J. Power Sources 27, 219–234 (1989)CrossRef M. Bartolozzi: Development of redox flow batteries. A historical bibliography, J. Power Sources 27, 219–234 (1989)CrossRef
[22]
go back to reference J. Giner, V. Jalan, L. Swette: Redox storage batteries, DECHEMA-Monographie 92, 381–393 (1982) J. Giner, V. Jalan, L. Swette: Redox storage batteries, DECHEMA-Monographie 92, 381–393 (1982)
[23]
go back to reference C. Menictas, M. Skyllas-Kazacos: Performance of vanadium-oxygen redox fuel cell, J. Appl. Electrochem. 41, 1223–1232 (2011)CrossRef C. Menictas, M. Skyllas-Kazacos: Performance of vanadium-oxygen redox fuel cell, J. Appl. Electrochem. 41, 1223–1232 (2011)CrossRef
[24]
go back to reference H. Zhang: Liquid redox rechargeable batteries. In: Electrochemical Technologies for Energy Storage and Conversion, ed. by R.S. Liu, L. Zhang, X. Sun, H. Liu, J. Zhang (Wiley-VCH, Weinheim 2012) p. 279CrossRef H. Zhang: Liquid redox rechargeable batteries. In: Electrochemical Technologies for Energy Storage and Conversion, ed. by R.S. Liu, L. Zhang, X. Sun, H. Liu, J. Zhang (Wiley-VCH, Weinheim 2012) p. 279CrossRef
[25]
go back to reference L.H. Thaller: Electrically rechargeable redox flow cell, US Patent 3996064 (1976) L.H. Thaller: Electrically rechargeable redox flow cell, US Patent 3996064 (1976)
[26]
go back to reference L.H. Thaller: National Aeronautics and Space Administration, US Dept (of Energy, NASA TM-79143; DOE/NASA/1002-79/3 1979) L.H. Thaller: National Aeronautics and Space Administration, US Dept (of Energy, NASA TM-79143; DOE/NASA/1002-79/3 1979)
[27]
go back to reference Formulation of the redox equation follows international standards, the reader may notice the accordingly reversed labels charge and discharge. Formulation of the redox equation follows international standards, the reader may notice the accordingly reversed labels charge and discharge.
[28]
go back to reference H. Izawa, T. Hiramatsu, S. Kondo: Research and development of 10 kW class redox flow battery, Proc. 21st Intersoc. Energy Convers. Eng. Conf., Vol. 2 (1986) p. 1018 H. Izawa, T. Hiramatsu, S. Kondo: Research and development of 10 kW class redox flow battery, Proc. 21st Intersoc. Energy Convers. Eng. Conf., Vol. 2 (1986) p. 1018
[29]
go back to reference B.B. Sales, F. Liu, O. Schaetzle, C.J.N. Buisman, H.V.M. Hamelers: Electrochemical characterization of a supercapacitor flow cell for power production from salinity gradients, Electrochim. Acta 86, 298–304 (2012)CrossRef B.B. Sales, F. Liu, O. Schaetzle, C.J.N. Buisman, H.V.M. Hamelers: Electrochemical characterization of a supercapacitor flow cell for power production from salinity gradients, Electrochim. Acta 86, 298–304 (2012)CrossRef
[30]
go back to reference C. Fabjan, J. Garche, B. Harrer, L. Jörissen, C. Kolbeck, F. Philippi, G. Tomazic, F. Wagner: The vanadium redox-battery: An efficient storage unit for photovoltaic systems, Electrochim. Acta 47, 825–831 (2001)CrossRef C. Fabjan, J. Garche, B. Harrer, L. Jörissen, C. Kolbeck, F. Philippi, G. Tomazic, F. Wagner: The vanadium redox-battery: An efficient storage unit for photovoltaic systems, Electrochim. Acta 47, 825–831 (2001)CrossRef
[31]
go back to reference R. Ferrigno, A.D. Stroock, T.D. Clark, M. Mayer, G.M. Whitesides: Membraneless vanadium redox fuel cell using laminar flow, J. Am. Chem. Soc. 124, 12930–12931 (2002)CrossRef R. Ferrigno, A.D. Stroock, T.D. Clark, M. Mayer, G.M. Whitesides: Membraneless vanadium redox fuel cell using laminar flow, J. Am. Chem. Soc. 124, 12930–12931 (2002)CrossRef
[32]
go back to reference M.A. Climent, P. Garces, M. Lopez-Segura, A. Aldaz: Systems for storage of electric energy. II. Filter press-type iron/chromium redox battery, An. Quim. Ser. A 83, 12–14 (1987) M.A. Climent, P. Garces, M. Lopez-Segura, A. Aldaz: Systems for storage of electric energy. II. Filter press-type iron/chromium redox battery, An. Quim. Ser. A 83, 12–14 (1987)
[33]
go back to reference This assignment is particularly confusing with RFBs. This assignment is particularly confusing with RFBs.
[34]
go back to reference K.J. Vetter, S. Bruckenstein: Electrochemical Kinetics (Academic Press, New York 1967) K.J. Vetter, S. Bruckenstein: Electrochemical Kinetics (Academic Press, New York 1967)
[35]
go back to reference G. Kreysa: Elektrochemie in dreidimensionalen Elektroden, Chem. Ing. Tech. 55, 23–30 (1983)CrossRef G. Kreysa: Elektrochemie in dreidimensionalen Elektroden, Chem. Ing. Tech. 55, 23–30 (1983)CrossRef
[36]
go back to reference B.K. Ferreira: Three-dimensional electrodes for the removal of metals from dilute solutions: A review, Min. Process. Extr. Metall. Rev. 29, 330–371 (2008)CrossRef B.K. Ferreira: Three-dimensional electrodes for the removal of metals from dilute solutions: A review, Min. Process. Extr. Metall. Rev. 29, 330–371 (2008)CrossRef
[37]
go back to reference R. Holze: Electrochemical thermodynamics and kinetics. Landolt--Börnstein: Numerical Data and Functional Relationships in Science and Technology -- New Series, Group IV/9A, ed. by W. Martienssen, M.D. Lechner (Springer, Berlin, Heidelberg 2007) R. Holze: Electrochemical thermodynamics and kinetics. Landolt--Börnstein: Numerical Data and Functional Relationships in Science and Technology -- New Series, Group IV/9A, ed. by W. Martienssen, M.D. Lechner (Springer, Berlin, Heidelberg 2007)
[38]
go back to reference R.J. Dwayne Miller, G.L. McLendon, A.J. Nozik, W. Schmickler, F. Willig: Surface Electron Transfer Processes (VCH, New York 1995) R.J. Dwayne Miller, G.L. McLendon, A.J. Nozik, W. Schmickler, F. Willig: Surface Electron Transfer Processes (VCH, New York 1995)
[39]
go back to reference W. Schmickler, E. Santos: Interfacial Electrochemistry (Springer, Heidelberg 2010)CrossRef W. Schmickler, E. Santos: Interfacial Electrochemistry (Springer, Heidelberg 2010)CrossRef
[40]
go back to reference N.B. Luque, W. Schmickler: Are the reactions of quinones on graphite adiabatic?, Electrochim. Acta 88, 892–894 (2013)CrossRef N.B. Luque, W. Schmickler: Are the reactions of quinones on graphite adiabatic?, Electrochim. Acta 88, 892–894 (2013)CrossRef
[41]
go back to reference C. Batchelor-McAuley, E. Laborda, M.C. Henstringe, R. Nissim, R.G. Compton: Reply to comments contained in ‘‘Are the reactions of quinones on graphite adiabatic?’’ by N.B. Luque, W. Schmickler (Electrochim. Acta 88, 892 (2013)), Electrochim. Acta 88, 895–898 (2013)CrossRef C. Batchelor-McAuley, E. Laborda, M.C. Henstringe, R. Nissim, R.G. Compton: Reply to comments contained in ‘‘Are the reactions of quinones on graphite adiabatic?’’ by N.B. Luque, W. Schmickler (Electrochim. Acta 88, 892 (2013)), Electrochim. Acta 88, 895–898 (2013)CrossRef
[42]
go back to reference R. Holze: Surface and Interface Analysis: An Electrochemists Toolbox (Springer, Heidelberg 2009) R. Holze: Surface and Interface Analysis: An Electrochemists Toolbox (Springer, Heidelberg 2009)
[43]
go back to reference K. Aoki, H. Kaneko, K. Nozaki: Estimation of charge transfer kinetic parameters from irreversible cyclic voltammograms at carbon fibre, J. Electroanal. Chem. 247, 29–36 (1988)CrossRef K. Aoki, H. Kaneko, K. Nozaki: Estimation of charge transfer kinetic parameters from irreversible cyclic voltammograms at carbon fibre, J. Electroanal. Chem. 247, 29–36 (1988)CrossRef
[44]
go back to reference C.-H. Bae, E.P.L. Roberts, R.A.W. Dryfe: Chromium redox couples for application to redox flow batteries, Electrochim. Acta 48, 279–287 (2002)CrossRef C.-H. Bae, E.P.L. Roberts, R.A.W. Dryfe: Chromium redox couples for application to redox flow batteries, Electrochim. Acta 48, 279–287 (2002)CrossRef
[45]
go back to reference S.A. Campbell, L.M. Peter: The effect of K+ on the heterogeneous rate-constant for the (Fe(CN)6) 3- (Fe(CN)6) 4- redox couple investigated by AC-impedance spectroscopy, J. Electroanal. Chem. 364, 257–260 (1994)CrossRef S.A. Campbell, L.M. Peter: The effect of K+ on the heterogeneous rate-constant for the (Fe(CN)6) 3- (Fe(CN)6) 4- redox couple investigated by AC-impedance spectroscopy, J. Electroanal. Chem. 364, 257–260 (1994)CrossRef
[46]
go back to reference D.S. Cheng, A. Reiner, E. Hollax: Activation of hydrochloric acid-CrCl·6H2O solutions with N-alkylamines, J. Appl. Electrochem. 15, 63–70 (1985)CrossRef D.S. Cheng, A. Reiner, E. Hollax: Activation of hydrochloric acid-CrCl·6H2O solutions with N-alkylamines, J. Appl. Electrochem. 15, 63–70 (1985)CrossRef
[47]
go back to reference A. Reiner, E. Hollax: Verfahren zum Reaktivieren von an Redoxreaktionen beteiligten infolge von Hydratisomere alternden Komplexverbindungen, German Patent DE 3316136 (1984) A. Reiner, E. Hollax: Verfahren zum Reaktivieren von an Redoxreaktionen beteiligten infolge von Hydratisomere alternden Komplexverbindungen, German Patent DE 3316136 (1984)
[48]
go back to reference H. Cnobloch, H. Nischik, K. Pantel, K. Ledjeff, A. Heinzel, A. Reiner: 250 W/1 kWh iron-chromium redox flow storage battery, Siemens Forsch. Entwickl. Ber. 17, 270–277 (1988) H. Cnobloch, H. Nischik, K. Pantel, K. Ledjeff, A. Heinzel, A. Reiner: 250 W/1 kWh iron-chromium redox flow storage battery, Siemens Forsch. Entwickl. Ber. 17, 270–277 (1988)
[49]
go back to reference The term catalysis appears sometimes also in the discussion of chemical degradation of electrode materials in RFB, in particular oxidative destruction of carbon-based materials in RFB. Indeed electrolyte solution components may act as catalysts in these unwanted reactions, nevertheless these processes are not treated here. The term catalysis appears sometimes also in the discussion of chemical degradation of electrode materials in RFB, in particular oxidative destruction of carbon-based materials in RFB. Indeed electrolyte solution components may act as catalysts in these unwanted reactions, nevertheless these processes are not treated here.
[50]
go back to reference R.F. Gahn, N.H. Hagedorn, J.A. Johnson: Cycling performance of the iron-chromium redox energy storage system, Proc. 20th Intersoc. Energy Convers. Eng. Conf., Vol. 2 (1985) pp. 91–97 R.F. Gahn, N.H. Hagedorn, J.A. Johnson: Cycling performance of the iron-chromium redox energy storage system, Proc. 20th Intersoc. Energy Convers. Eng. Conf., Vol. 2 (1985) pp. 91–97
[51]
go back to reference H. Cnobloch, H. Nischik, K. Pantel, K. Ledjeff, A. Heinzel, A. Reiner: Eisen-Chrom-Redoxionen-Speicher, Dechema-Monographie 109, 427–445 (1987) H. Cnobloch, H. Nischik, K. Pantel, K. Ledjeff, A. Heinzel, A. Reiner: Eisen-Chrom-Redoxionen-Speicher, Dechema-Monographie 109, 427–445 (1987)
[52]
go back to reference C.C. Liu, R.T. Galasco, F. Savinell: Operating performance of an Fe-Ti stationary redox battery in the presence of lead, J. Electrochem. Soc. 129, 2502–2505 (1982)CrossRef C.C. Liu, R.T. Galasco, F. Savinell: Operating performance of an Fe-Ti stationary redox battery in the presence of lead, J. Electrochem. Soc. 129, 2502–2505 (1982)CrossRef
[53]
go back to reference S. Zhong, C. Padeste, M. Kazacos, M. Skyllas-Kazacos: Comparison of the physical, chemical and electrochemical properties of rayon-based and polyacrylonitrile-based graphite felt electrodes, J. Power Sources 45, 29–41 (1993)CrossRef S. Zhong, C. Padeste, M. Kazacos, M. Skyllas-Kazacos: Comparison of the physical, chemical and electrochemical properties of rayon-based and polyacrylonitrile-based graphite felt electrodes, J. Power Sources 45, 29–41 (1993)CrossRef
[54]
go back to reference M.A. Climent, P. Garces, A. Aldaz: Cyclic voltammetric study of Fe3+/Fe2+ electrodic reaction for use in a Fe/Cr battery, Bull. Electrochem. 4, 845–848 (1988) M.A. Climent, P. Garces, A. Aldaz: Cyclic voltammetric study of Fe3+/Fe2+ electrodic reaction for use in a Fe/Cr battery, Bull. Electrochem. 4, 845–848 (1988)
[55]
go back to reference H. Kaneko, K. Nozaki, Y. Wada, T. Aoki, A. Negishi, M. Kamimoto: Vanadium redox reactions and carbon electrodes for vanadium redox flow battery, Electrochim. Acta 36, 1191–1196 (1991)CrossRef H. Kaneko, K. Nozaki, Y. Wada, T. Aoki, A. Negishi, M. Kamimoto: Vanadium redox reactions and carbon electrodes for vanadium redox flow battery, Electrochim. Acta 36, 1191–1196 (1991)CrossRef
[56]
go back to reference H.S. Kim: Electrochemical properties of graphite-based electrodes for redox flow batteries, Bull. Korean Chem. Soc. 32, 571–575 (2011)CrossRef H.S. Kim: Electrochemical properties of graphite-based electrodes for redox flow batteries, Bull. Korean Chem. Soc. 32, 571–575 (2011)CrossRef
[57]
go back to reference H. Cnobloch, H. Nischik, K. Pantel, K. Ledjeff, A. Heinzel: Application of carbon as a construction material in redox-flow-storage-batteries, Proc. Carbon 86, 4th Int. Carbon Conf. Baden-Baden (1986) pp. 367–369 H. Cnobloch, H. Nischik, K. Pantel, K. Ledjeff, A. Heinzel: Application of carbon as a construction material in redox-flow-storage-batteries, Proc. Carbon 86, 4th Int. Carbon Conf. Baden-Baden (1986) pp. 367–369
[58]
go back to reference R. Holze: Underpotential deposit electrocatalysis of fast redox reactions for electrochemical energy storage systems, J. Solid State Electrochem. 2, 73–77 (1998)CrossRef R. Holze: Underpotential deposit electrocatalysis of fast redox reactions for electrochemical energy storage systems, J. Solid State Electrochem. 2, 73–77 (1998)CrossRef
[59]
go back to reference P. Mayer, R. Holze: Electrocatalysis of redox reactions by metal nanoparticles on graphite electrodes, J.Solid State Electrochem. 5, 402–411 (2001)CrossRef P. Mayer, R. Holze: Electrocatalysis of redox reactions by metal nanoparticles on graphite electrodes, J.Solid State Electrochem. 5, 402–411 (2001)CrossRef
[60]
go back to reference C.Y. Yang: Catalytic electrodes for the Redox Flow Cell energy storage device, J. Appl. Electrochem. 12, 425–434 (1982)CrossRef C.Y. Yang: Catalytic electrodes for the Redox Flow Cell energy storage device, J. Appl. Electrochem. 12, 425–434 (1982)CrossRef
[61]
go back to reference W. Li, J. Liu, C. Yan: Multi-walled carbon nanotubes used as an electrode reaction catalyst for VO2 +/VO2+ for a vanadium redox flow battery, Carbon 49, 3463–3470 (2011)CrossRef W. Li, J. Liu, C. Yan: Multi-walled carbon nanotubes used as an electrode reaction catalyst for VO2 +/VO2+ for a vanadium redox flow battery, Carbon 49, 3463–3470 (2011)CrossRef
[62]
go back to reference W. Li, J. Liu, C. Yan: The electrochemical catalytic activity of single-walled carbon nanotubes towards VO2 +/VO2+ and V3+/V2+ redox pairs for an all vanadium redox flow battery, Electrochim. Acta 79, 102–108 (2012)CrossRef W. Li, J. Liu, C. Yan: The electrochemical catalytic activity of single-walled carbon nanotubes towards VO2 +/VO2+ and V3+/V2+ redox pairs for an all vanadium redox flow battery, Electrochim. Acta 79, 102–108 (2012)CrossRef
[63]
go back to reference W. Li, J. Liu, C. Yan: Graphite–graphite oxide composite electrode for vanadium redox flow battery, Electrochim. Acta 56, 5290–5294 (2011)CrossRef W. Li, J. Liu, C. Yan: Graphite–graphite oxide composite electrode for vanadium redox flow battery, Electrochim. Acta 56, 5290–5294 (2011)CrossRef
[64]
go back to reference G. Wei, C. Jia, J. Liu, C. Yan: Carbon felt supported carbon nanotubes catalysts composite electrode for vanadium redox flow battery application, J. Power Sources 220, 185–192 (2012)CrossRef G. Wei, C. Jia, J. Liu, C. Yan: Carbon felt supported carbon nanotubes catalysts composite electrode for vanadium redox flow battery application, J. Power Sources 220, 185–192 (2012)CrossRef
[65]
go back to reference H. Yang, C.-H. Hung, S.-P. Wang, I.-L. Chiang: Graphite felt with vapor grown carbon fibers as electrodes for vanadium redox flow batteries, Rare Metals 30, 1–4 (2011), Spec. IssueCrossRef H. Yang, C.-H. Hung, S.-P. Wang, I.-L. Chiang: Graphite felt with vapor grown carbon fibers as electrodes for vanadium redox flow batteries, Rare Metals 30, 1–4 (2011), Spec. IssueCrossRef
[66]
go back to reference O. Warburg, W. Brefeld: Über die Aktivierung stickstoffhaltiger Kohlen durch Eisen, Biochem. Z. 145, 461–480 (1924) O. Warburg, W. Brefeld: Über die Aktivierung stickstoffhaltiger Kohlen durch Eisen, Biochem. Z. 145, 461–480 (1924)
[67]
go back to reference S. Wang, X. Zhao, T. Cochell, A. Manthiram: Nitrogen-doped carbon nanotube/graphite felts as advanced electrode materials for vanadium redox flow batteries, J. Phys. Chem. Lett. 3, 2164–2167 (2012)CrossRef S. Wang, X. Zhao, T. Cochell, A. Manthiram: Nitrogen-doped carbon nanotube/graphite felts as advanced electrode materials for vanadium redox flow batteries, J. Phys. Chem. Lett. 3, 2164–2167 (2012)CrossRef
[68]
go back to reference H.-P. Boehm: Funktionelle Gruppen an Festkörper-Oberflächen, Angew. Chem. 78, 617–628 (1966)CrossRef H.-P. Boehm: Funktionelle Gruppen an Festkörper-Oberflächen, Angew. Chem. 78, 617–628 (1966)CrossRef
[69]
go back to reference J. Mrha: Katalysatoren für die Elektroden der Brennstoffelemente II. Aktivkohle als Katalysator der Elektroreduktion des Sauerstoffes, Collect. Czechoslov. Chem. Commun. 31, 715–733 (1966)CrossRef J. Mrha: Katalysatoren für die Elektroden der Brennstoffelemente II. Aktivkohle als Katalysator der Elektroreduktion des Sauerstoffes, Collect. Czechoslov. Chem. Commun. 31, 715–733 (1966)CrossRef
[70]
go back to reference J. Mrha: Study of catalysts for fuel cell electrodes. IV. Active carbon electrodes for oxygen in alkaline electrolyte, Collect. Czechoslov. Chem. Commun. 32, 708–719 (1967)CrossRef J. Mrha: Study of catalysts for fuel cell electrodes. IV. Active carbon electrodes for oxygen in alkaline electrolyte, Collect. Czechoslov. Chem. Commun. 32, 708–719 (1967)CrossRef
[71]
go back to reference E. Hollax, D.S. Cheng: The influence of oxidative pretreatment of graphite-electrodes on the catalysis of the Cr3+/Cr2+ and Fe3+/Fe2+ redox reactions, Carbon 23, 655–664 (1985)CrossRef E. Hollax, D.S. Cheng: The influence of oxidative pretreatment of graphite-electrodes on the catalysis of the Cr3+/Cr2+ and Fe3+/Fe2+ redox reactions, Carbon 23, 655–664 (1985)CrossRef
[72]
go back to reference P.X. Han, H.B. Wang, Z.H. Liu, X.A. Chen, W. Ma, J.H. Yao, Y.W. Zhu, G.L. Cui: Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/VO2 + and V2+/V3+ redox couples for a vanadium redox flow battery, Carbon 49, 693–700 (2011)CrossRef P.X. Han, H.B. Wang, Z.H. Liu, X.A. Chen, W. Ma, J.H. Yao, Y.W. Zhu, G.L. Cui: Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/VO2 + and V2+/V3+ redox couples for a vanadium redox flow battery, Carbon 49, 693–700 (2011)CrossRef
[73]
go back to reference B.T. Sun, M. Skyllas-Kazacos: Modification of graphite electrode materials for vanadium redox flow battery application – I. Thermal treatment, Electrochim. Acta 37, 1253–1260 (1992)CrossRef B.T. Sun, M. Skyllas-Kazacos: Modification of graphite electrode materials for vanadium redox flow battery application – I. Thermal treatment, Electrochim. Acta 37, 1253–1260 (1992)CrossRef
[74]
go back to reference P. Han, Y. Yue, Z. Liu, W. Xu, L. Zhang, H. Xu, S. Dong, G. Cui: Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2 + redox couples for vanadium redox flow batteries, Energy Environmen. Sci. 4, 4710–4717 (2011)CrossRef P. Han, Y. Yue, Z. Liu, W. Xu, L. Zhang, H. Xu, S. Dong, G. Cui: Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2 + redox couples for vanadium redox flow batteries, Energy Environmen. Sci. 4, 4710–4717 (2011)CrossRef
[75]
go back to reference M. Inoue, Y. Iizuka, M. Shimada, Y. Tsuzuki: Carbon-fiber electrode for redox flow battery, J. Electrochem. Soc. 134, 756–757 (1987)CrossRef M. Inoue, Y. Iizuka, M. Shimada, Y. Tsuzuki: Carbon-fiber electrode for redox flow battery, J. Electrochem. Soc. 134, 756–757 (1987)CrossRef
[76]
go back to reference Fenton’s reagent is an aqueous solution of Fe(II)-salts with hydrogen peroxide. It has a very high oxidation capability (see relevant standard potentials [18.37]) based presumably on the formation of hydroxyl radicals according to H2O2 + Fe2+→Fe3+ + OH− + OH* [18.77]. The conversion of Fe(II) into Fe(III) causes the need for either supply of further Fe(II) in order to keep the reaction going or regeneration of Fe(II) from Fe(III) by reduction. This can be elegantly performed electrochemically, accordingly the name of the reagent is now electro-Fenton’s reagent [18.78]. Fenton’s reagent is an aqueous solution of Fe(II)-salts with hydrogen peroxide. It has a very high oxidation capability (see relevant standard potentials [18.37]) based presumably on the formation of hydroxyl radicals according to H2O2 + Fe2+→Fe3+ + OH + OH* [18.77]. The conversion of Fe(II) into Fe(III) causes the need for either supply of further Fe(II) in order to keep the reaction going or regeneration of Fe(II) from Fe(III) by reduction. This can be elegantly performed electrochemically, accordingly the name of the reagent is now electro-Fenton’s reagent [18.78].
[77]
go back to reference C. Walling: Fenton’s Reagent Revisited, Acc. Chem. Res. 8, 125–131 (1975)CrossRef C. Walling: Fenton’s Reagent Revisited, Acc. Chem. Res. 8, 125–131 (1975)CrossRef
[78]
go back to reference E. Brillas, I. Sires, M.A. Oturan: Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry, Chem. Rev. 109, 6570–6631 (2009)CrossRef E. Brillas, I. Sires, M.A. Oturan: Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry, Chem. Rev. 109, 6570–6631 (2009)CrossRef
[79]
go back to reference C. Gao, N.F. Wang, S. Peng, S.Q. Lin, Y. Lei, X.X. Liang, S.S. Zeng, H.F. Zi: Influence of Fenton’s reagent treatment on electrochemical properties of graphite felt for all vanadium redox flow battery, Electrochim. Acta 88, 193–202 (2013)CrossRef C. Gao, N.F. Wang, S. Peng, S.Q. Lin, Y. Lei, X.X. Liang, S.S. Zeng, H.F. Zi: Influence of Fenton’s reagent treatment on electrochemical properties of graphite felt for all vanadium redox flow battery, Electrochim. Acta 88, 193–202 (2013)CrossRef
[80]
go back to reference V. Pupkevich, V. Glibin, D. Karamanev: The effect of activation on the electrochemical behaviour of graphite felt towards the Fe3+/Fe2+ redox electrode reaction, Electrochem. Commun. 9, 1924–1930 (2007)CrossRef V. Pupkevich, V. Glibin, D. Karamanev: The effect of activation on the electrochemical behaviour of graphite felt towards the Fe3+/Fe2+ redox electrode reaction, Electrochem. Commun. 9, 1924–1930 (2007)CrossRef
[81]
go back to reference S. Li, K. Huang, S. Lu, D. Fang, X. Wu, D. Lu, T. Wu: Effect of organic additives on positive electrolyte for vanadium redox battery, Electrochim. Acta 56, 5483–5487 (2011)CrossRef S. Li, K. Huang, S. Lu, D. Fang, X. Wu, D. Lu, T. Wu: Effect of organic additives on positive electrolyte for vanadium redox battery, Electrochim. Acta 56, 5483–5487 (2011)CrossRef
[82]
go back to reference B.T. Sun, M. Skyllas-Kazacos: Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution, Electrochim. Acta 36, 513–517 (1991)CrossRef B.T. Sun, M. Skyllas-Kazacos: Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution, Electrochim. Acta 36, 513–517 (1991)CrossRef
[83]
go back to reference B.T. Sun, M. Skyllas-Kazacos: Chemical modification of graphite electrode materials for vanadium redox flow battery application—part II. Acid treatments, Electrochim. Acta 37, 2459–2465 (1992)CrossRef B.T. Sun, M. Skyllas-Kazacos: Chemical modification of graphite electrode materials for vanadium redox flow battery application—part II. Acid treatments, Electrochim. Acta 37, 2459–2465 (1992)CrossRef
[84]
go back to reference Y.Y. Shao, X.D. Wang, M. Engelhard, C.M. Wang, S. Dai, J. Liu, Z.G. Yang, Y.H. Lin: Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries, J. Power Sources 195, 4375–4379 (2010)CrossRef Y.Y. Shao, X.D. Wang, M. Engelhard, C.M. Wang, S. Dai, J. Liu, Z.G. Yang, Y.H. Lin: Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries, J. Power Sources 195, 4375–4379 (2010)CrossRef
[85]
go back to reference T. Wu, K. Huang, S. Liu, S. Zhuang, D. Fang, S. Li, D. Lu, A. Su: Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery, J. Solid State Electrochem. 16, 579–585 (2012)CrossRef T. Wu, K. Huang, S. Liu, S. Zhuang, D. Fang, S. Li, D. Lu, A. Su: Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery, J. Solid State Electrochem. 16, 579–585 (2012)CrossRef
[86]
go back to reference S. Trasatti: Electrocatalysis of hydrogen evolution: Progress in cathode activation. In: Advances in Electrochemical Science and Engineering, Vol. 2, ed. by H. Gerischer, C.W. Tobias (VCH, Weinheim 1990) p. 1CrossRef S. Trasatti: Electrocatalysis of hydrogen evolution: Progress in cathode activation. In: Advances in Electrochemical Science and Engineering, Vol. 2, ed. by H. Gerischer, C.W. Tobias (VCH, Weinheim 1990) p. 1CrossRef
[87]
go back to reference P.N. Ross: The science of electrocatalysis on bimetallic surfaces. In: Electrocatalysis, ed. by J. Lipkowski, P.N. Ross (Wiley-VCH, New York 1998) p. 43 P.N. Ross: The science of electrocatalysis on bimetallic surfaces. In: Electrocatalysis, ed. by J. Lipkowski, P.N. Ross (Wiley-VCH, New York 1998) p. 43
[88]
go back to reference S. Dapperheld: Elektrokatalytisches Verfahren zur Aufbereitung von Mutterlaugen aus der Chloressigsäure-Produktion, DECHEMA-Monographie 112, 317–324 (1988) S. Dapperheld: Elektrokatalytisches Verfahren zur Aufbereitung von Mutterlaugen aus der Chloressigsäure-Produktion, DECHEMA-Monographie 112, 317–324 (1988)
[90]
go back to reference R. Holze, U. Fette: Zur Elektrokatalyse der Dichloressigsäurereduktion, DECHEMA-Monographie 125, 769–775 (1992) R. Holze, U. Fette: Zur Elektrokatalyse der Dichloressigsäurereduktion, DECHEMA-Monographie 125, 769–775 (1992)
[91]
go back to reference D. Cheng, E. Hollax: Redox batteries, Ger. Offen. DE 3.333.650 (28.03.1985) D. Cheng, E. Hollax: Redox batteries, Ger. Offen. DE 3.333.650 (28.03.1985)
[92]
go back to reference A. Heinzel: Redox battery, Eur. Pat. Appl. 3.735.992 (23.10.1987), US Patent 4882241 (1989) A. Heinzel: Redox battery, Eur. Pat. Appl. 3.735.992 (23.10.1987), US Patent 4882241 (1989)
[93]
go back to reference L.L. Swette, V.M. Jalan: Characterization of gold electrocatalysts for iron/chromium redox batteries, J. Electrochem. Soc. 133, C122–C122 (1986) L.L. Swette, V.M. Jalan: Characterization of gold electrocatalysts for iron/chromium redox batteries, J. Electrochem. Soc. 133, C122–C122 (1986)
[94]
go back to reference L.L. Swette, V.M. Jalan: Characterization of gold electrocatalyst for iron/chromium redox battery, Proc. Electrochem. Soc. 86-10, 195–201 (1986) L.L. Swette, V.M. Jalan: Characterization of gold electrocatalyst for iron/chromium redox battery, Proc. Electrochem. Soc. 86-10, 195–201 (1986)
[95]
go back to reference J. Giner, K. Cahill: Catalyst surfaces for the chromous/chromic redox couple, US Patent 4192910, WO 80/01221, EP 0312875B1 (1980) J. Giner, K. Cahill: Catalyst surfaces for the chromous/chromic redox couple, US Patent 4192910, WO 80/01221, EP 0312875B1 (1980)
[96]
go back to reference A. Rodes, A. Aldaz, P. Garces, M.A. Climent: Electrocatalysis of the Cr(III)/Cr(II) couple on graphite electrodes, Bull. Electrochem. 5, 129–133 (1989) A. Rodes, A. Aldaz, P. Garces, M.A. Climent: Electrocatalysis of the Cr(III)/Cr(II) couple on graphite electrodes, Bull. Electrochem. 5, 129–133 (1989)
[97]
go back to reference W. Wang, X. Wang: Study of the electrochemical properties of a transition metallic ions modified electrode in acidic VOSO4 solution, Rare Metals 26, 131–135 (2007)CrossRef W. Wang, X. Wang: Study of the electrochemical properties of a transition metallic ions modified electrode in acidic VOSO4 solution, Rare Metals 26, 131–135 (2007)CrossRef
[98]
go back to reference R. Holze: Carbon as electrocatalyst for applications in electrochemical energy conversion – An overview, Proc. Carbon 86, 4th Int. Carbon Conf., Baden-Baden (1986) pp. 361–363 R. Holze: Carbon as electrocatalyst for applications in electrochemical energy conversion – An overview, Proc. Carbon 86, 4th Int. Carbon Conf., Baden-Baden (1986) pp. 361–363
[99]
go back to reference A. Krüger: Neue Kohlenstoffmaterialien (Teubner, Wiesbaden 2007) A. Krüger: Neue Kohlenstoffmaterialien (Teubner, Wiesbaden 2007)
[100]
go back to reference H.T. Zhou, H.M. Zhang, P. Zhao, B.L. Yi: A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery, Electrochim. Acta 51, 6304–6312 (2006)CrossRef H.T. Zhou, H.M. Zhang, P. Zhao, B.L. Yi: A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery, Electrochim. Acta 51, 6304–6312 (2006)CrossRef
[101]
go back to reference C. Flox, J. Rubio-Garcia, R. Nafria, R. Zamani, M. Skoumal, T. Andreu, J. Arbiol, A. Cabot, J.R. Morante: Active nano-CuPt3 electrocatalyst supported on graphene for enhancing reactions at the cathode in all-Vanadium redox flow batteries, Carbon 50, 2372–2374 (2012)CrossRef C. Flox, J. Rubio-Garcia, R. Nafria, R. Zamani, M. Skoumal, T. Andreu, J. Arbiol, A. Cabot, J.R. Morante: Active nano-CuPt3 electrocatalyst supported on graphene for enhancing reactions at the cathode in all-Vanadium redox flow batteries, Carbon 50, 2372–2374 (2012)CrossRef
[102]
go back to reference R.-H. Huang, C.-H. Sun, T.-M. Tseng, W.-K. Chao, K.-L. Hsueh, F.-S. Shieu: Investigation of active electrodes modified with platinum/multiwalled carbon nanotube for vanadium redox flow battery, J. Electrochem. Soc. 159, A1579–A1586 (2012)CrossRef R.-H. Huang, C.-H. Sun, T.-M. Tseng, W.-K. Chao, K.-L. Hsueh, F.-S. Shieu: Investigation of active electrodes modified with platinum/multiwalled carbon nanotube for vanadium redox flow battery, J. Electrochem. Soc. 159, A1579–A1586 (2012)CrossRef
[103]
go back to reference S.H. Ge, B.L. Yi, H.M. Zhang: Study of a high power density sodium polysulfide/bromine energy storage cell, J. Appl. Electrochem. 34, 181–185 (2004)CrossRef S.H. Ge, B.L. Yi, H.M. Zhang: Study of a high power density sodium polysulfide/bromine energy storage cell, J. Appl. Electrochem. 34, 181–185 (2004)CrossRef
[104]
go back to reference H.-M. Tsai, S.-J. Yang, C.-C.M. Ma, X. Xie: Preparation and electrochemical activities of iridium-decorated graphene as the electrode for all-vanadium redox flow batteries, Electrochim. Acta 77, 232–236 (2012)CrossRef H.-M. Tsai, S.-J. Yang, C.-C.M. Ma, X. Xie: Preparation and electrochemical activities of iridium-decorated graphene as the electrode for all-vanadium redox flow batteries, Electrochim. Acta 77, 232–236 (2012)CrossRef
[105]
go back to reference C.H. Chang, T.S. Yuen, Y. Nagao, H. Yugami: Electrocatalytic activity of iridium oxide nanoparticles coated on carbon for oxygen reduction as cathode catalyst in polymer electrolyte fuel cell, J. Power Sources 195, 5938–5941 (2010)CrossRef C.H. Chang, T.S. Yuen, Y. Nagao, H. Yugami: Electrocatalytic activity of iridium oxide nanoparticles coated on carbon for oxygen reduction as cathode catalyst in polymer electrolyte fuel cell, J. Power Sources 195, 5938–5941 (2010)CrossRef
[106]
go back to reference J.-H. Kim, K.J. Kim, M.-S. Park, N.J. Lee, U. Hwang, H. Kim, Y.-J. Kim: Development of metal-based electrodes for non-aqueous redox flow batteries, Electrochem. Commun. 13, 997–1000 (2011)CrossRef J.-H. Kim, K.J. Kim, M.-S. Park, N.J. Lee, U. Hwang, H. Kim, Y.-J. Kim: Development of metal-based electrodes for non-aqueous redox flow batteries, Electrochem. Commun. 13, 997–1000 (2011)CrossRef
[107]
go back to reference M. Rychcik, M. Skyllas-Kazacos: Evaluation of electrode materials for vanadium redox cell, J. Power Sources 19, 45–54 (1987)CrossRef M. Rychcik, M. Skyllas-Kazacos: Evaluation of electrode materials for vanadium redox cell, J. Power Sources 19, 45–54 (1987)CrossRef
[108]
go back to reference P. Zhao, H. Zhang, H. Zhou, B. Yi: Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes, Electrochim. Acta 51, 1091–1098 (2005)CrossRef P. Zhao, H. Zhang, H. Zhou, B. Yi: Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes, Electrochim. Acta 51, 1091–1098 (2005)CrossRef
[109]
go back to reference C. Yao, H. Zhang, T. Liu, X. Li, Z. Liu: Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery, J. Power Sources 218, 455–461 (2012)CrossRef C. Yao, H. Zhang, T. Liu, X. Li, Z. Liu: Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery, J. Power Sources 218, 455–461 (2012)CrossRef
[110]
go back to reference S. Zhong, M. Skyllas-Kazacos: Electrochemical behaviour of vanadium(V)/vanadium(IV) redox couple at graphite electrodes, J. Power Sources 39, 1–9 (1992)CrossRef S. Zhong, M. Skyllas-Kazacos: Electrochemical behaviour of vanadium(V)/vanadium(IV) redox couple at graphite electrodes, J. Power Sources 39, 1–9 (1992)CrossRef
[111]
go back to reference J. Ahn, R. Holze: Bifunctional electrodes for an integrated water-electrolysis and hydrogen-oxygen fuel cell with a solid polymer electrolyte, J. Appl. Electrochem. 22, 1167–1174 (1992)CrossRef J. Ahn, R. Holze: Bifunctional electrodes for an integrated water-electrolysis and hydrogen-oxygen fuel cell with a solid polymer electrolyte, J. Appl. Electrochem. 22, 1167–1174 (1992)CrossRef
[112]
go back to reference J. Herrmann: Entwicklung und Anwendung einer elektrochemischen Methode zur Untersuchung schneller zwischengelagerter Reaktionen an Ringelektroden in turbulenter Rohrströmung, Ph.D. Thesis (Bonn University, Bonn 1983) J. Herrmann: Entwicklung und Anwendung einer elektrochemischen Methode zur Untersuchung schneller zwischengelagerter Reaktionen an Ringelektroden in turbulenter Rohrströmung, Ph.D. Thesis (Bonn University, Bonn 1983)
[113]
go back to reference J. Herrmann, H. Schmidt, W. Vielstich: Electrochemical investigations of a fast chemical step between two charge transfer reactions, Z. Phys. Chem. NF 139, 83–96 (1984)CrossRef J. Herrmann, H. Schmidt, W. Vielstich: Electrochemical investigations of a fast chemical step between two charge transfer reactions, Z. Phys. Chem. NF 139, 83–96 (1984)CrossRef
Metadata
Title
Kinetics of Fast Redox Systems for Energy Storage
Author
Rudolf Holze
Copyright Year
2017
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46657-5_18