Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 7-8/2021

11-06-2021 | Original Article

Lagrangian-averaged vorticity deviation of spiraling blood flow in the heart during isovolumic contraction and ejection phases

Authors: Ke Yang, Shiqian Wu, Hui Zhang, Dhanjoo N. Ghista, Oluwarotimi W. Samuel, Kelvin K. L. Wong

Published in: Medical & Biological Engineering & Computing | Issue 7-8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The formation of vortex rings in the left ventricular (LV) blood flow is a mechanism for optimized blood transport from the mitral valve inlet to aortic valve outlet, and the vorticity is an important measure of a well-functioning LV. However, due to lack of quantitative methods, the process of defining the boundary of a vortex in the LV and identifying the dominant vortex components has not been studied previously. The Lagrangian-averaged vorticity deviation (LAVD) can enable us to compute the trajectory integral of the normed difference of the vorticity from its spatial mean. Therefore, in this work, we have employed LAVD to identify the Lagrangian vortices and Eulerian vortices for measuring the vortex volume and vorticity in the LV blood flow. We found that during the LV ejection period, the positive (counterclockwise) and negative (clockwise) vorticity of patients are consistently stronger than those of the healthy groups, and the counterclockwise vortex volume of healthy groups (0.84+0.26 ml) is greater than that of patients (0.55+0.28 ml) during the pre-ejection period. Then, during the middle ejection phase, the counterclockwise vortex ring volume of patients (1.89+0.36 ml) exceeds that of healthy groups (1.38+0.43 ml). Finally, during the end-ejection period, the counterclockwise vortex ring volume of healthy subjects (0.61+0.17 ml) is the same as that of patients (0.60+0.19 ml). The results presented in this paper can provide new insights into the blood flow patterns within the LV. It can accurately indicate the role of vortices and vorticity values in intra-LV flow, and portray how cardiomyopathy (and its distorted contractile mechanism) can affect intra-LV flow patterns and mitigate adequate LV outflow.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Kheradvar A, Houle H, Pedrizzetti G, Tonti G, Belcik T, Ashraf M, Lindner JR, Gharib M, Sahn D (2010) Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J Am Soc Echocardiogr 23(1):86–94CrossRef Kheradvar A, Houle H, Pedrizzetti G, Tonti G, Belcik T, Ashraf M, Lindner JR, Gharib M, Sahn D (2010) Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J Am Soc Echocardiogr 23(1):86–94CrossRef
2.
go back to reference Kheradvar A, Milano M, Gharib M (2007) Correlation between vortex ring formation and mitral annulus dynamics during ventricular rapid filling. ASAIO J 53(1):8–16CrossRef Kheradvar A, Milano M, Gharib M (2007) Correlation between vortex ring formation and mitral annulus dynamics during ventricular rapid filling. ASAIO J 53(1):8–16CrossRef
3.
go back to reference Wong KKL, Kelso RM, Worthley SG, Sanders P, Mazumdar J, Abbott D (2009) Cardiac flow analysis applied to phase contrast magnetic resonance imaging of the heart. Ann Biomed Eng 37(8):1495–1515CrossRef Wong KKL, Kelso RM, Worthley SG, Sanders P, Mazumdar J, Abbott D (2009) Cardiac flow analysis applied to phase contrast magnetic resonance imaging of the heart. Ann Biomed Eng 37(8):1495–1515CrossRef
4.
go back to reference Gharib M, Rambod E, Kheradvar A, Sahn DJ, Dabiri JO (2006) Optimal vortex formation as an index of cardiac health. Proc Natl Acad Sci 103(16):6305–6308CrossRef Gharib M, Rambod E, Kheradvar A, Sahn DJ, Dabiri JO (2006) Optimal vortex formation as an index of cardiac health. Proc Natl Acad Sci 103(16):6305–6308CrossRef
5.
go back to reference Ghista DN, Li L, Chua LP et al (2009) Mechanism of left ventricular pressure increase during isovolumic contraction, and determination of its equivalent myocardial fibers orientation. Journal Mechanics Medicine and Biology 9(2):177–198CrossRef Ghista DN, Li L, Chua LP et al (2009) Mechanism of left ventricular pressure increase during isovolumic contraction, and determination of its equivalent myocardial fibers orientation. Journal Mechanics Medicine and Biology 9(2):177–198CrossRef
6.
go back to reference Chapra SC (2013) Numerical methods for engineers[J]. Mcgraw-Hill Publ Comp 22(6):59–68 Chapra SC (2013) Numerical methods for engineers[J]. Mcgraw-Hill Publ Comp 22(6):59–68
7.
go back to reference Garcia J, Larose E, Pibarot P, Kadem L (2013) On the evaluation of vorticity using cardiovascular magnetic resonance velocity measurements. J Biomech Eng 135(12):124501–124506CrossRef Garcia J, Larose E, Pibarot P, Kadem L (2013) On the evaluation of vorticity using cardiovascular magnetic resonance velocity measurements. J Biomech Eng 135(12):124501–124506CrossRef
8.
go back to reference Hirtler D, Garcia J, Barker AJ, Geiger J (2016) Assessment of intracardiac flow and vorticity in the right heart of patients after repair of tetralogy of Fallot by flow-sensitive 4D MRI. Eur Radiol 26(10):3598–3607CrossRef Hirtler D, Garcia J, Barker AJ, Geiger J (2016) Assessment of intracardiac flow and vorticity in the right heart of patients after repair of tetralogy of Fallot by flow-sensitive 4D MRI. Eur Radiol 26(10):3598–3607CrossRef
9.
go back to reference Spiczak JV, Crelier G, Giese D, Kozerke S, Maintz D, Bunck AC (2015) Quantitative analysis of vortical blood flow in the thoracic aorta using 4D phase contrast MRI. PLoS One 10(9):e0139025CrossRef Spiczak JV, Crelier G, Giese D, Kozerke S, Maintz D, Bunck AC (2015) Quantitative analysis of vortical blood flow in the thoracic aorta using 4D phase contrast MRI. PLoS One 10(9):e0139025CrossRef
10.
go back to reference Nordmeyer S, Riesenkampff E, Messroghli D, Kropf S, Nordmeyer J, Berger F, Kuehne T (2013) Four-dimensional velocity-encoded magnetic resonance imaging improves blood flow quantification in patients with complex accelerated flow. J Magn Reson Imaging 37(1):208–216CrossRef Nordmeyer S, Riesenkampff E, Messroghli D, Kropf S, Nordmeyer J, Berger F, Kuehne T (2013) Four-dimensional velocity-encoded magnetic resonance imaging improves blood flow quantification in patients with complex accelerated flow. J Magn Reson Imaging 37(1):208–216CrossRef
11.
go back to reference Frydrychowicz A, Berger A, Stalder AF, Markl M (2009) Preliminary results by flow-sensitive magnetic resonance imaging after Tiron David I procedure with an anatomically shaped ascending aortic graft. Interact Cardiovasc Thorac Surg 9(2):155–158CrossRef Frydrychowicz A, Berger A, Stalder AF, Markl M (2009) Preliminary results by flow-sensitive magnetic resonance imaging after Tiron David I procedure with an anatomically shaped ascending aortic graft. Interact Cardiovasc Thorac Surg 9(2):155–158CrossRef
12.
go back to reference Lorenz R, Bock J, Barker AJ, Knobelsdorff-Brenkenhoff FV, Wallis W, Korvink JG et al (2014) 4D flow magnetic resonance imaging in bicuspid aortic valve disease demonstrates altered distribution of aortic blood flow helicity. Magn Reson Med 71(4):1542–1553CrossRef Lorenz R, Bock J, Barker AJ, Knobelsdorff-Brenkenhoff FV, Wallis W, Korvink JG et al (2014) 4D flow magnetic resonance imaging in bicuspid aortic valve disease demonstrates altered distribution of aortic blood flow helicity. Magn Reson Med 71(4):1542–1553CrossRef
13.
go back to reference Zhong L, Tan RS, Ghista DN, EYK N, Chua LP, Kassab GS (2007) Validation of a novel noninvasive cardiac index of left ventricular contractility in patients. American Journal of Physiology-Heart Circulatory Physiology 292:H2764–H2772CrossRef Zhong L, Tan RS, Ghista DN, EYK N, Chua LP, Kassab GS (2007) Validation of a novel noninvasive cardiac index of left ventricular contractility in patients. American Journal of Physiology-Heart Circulatory Physiology 292:H2764–H2772CrossRef
14.
go back to reference Etebari A, Vlachos PP (2006) Improvements on the accuracy of derivative estimation from DPIV velocity measurements. Exp Fluids 40(3):500–502CrossRef Etebari A, Vlachos PP (2006) Improvements on the accuracy of derivative estimation from DPIV velocity measurements. Exp Fluids 40(3):500–502CrossRef
15.
go back to reference Sotelo J, Urbina J, Valverde I, Mura J, Tejos C, Irarrazaval P, Andia ME, Hurtado DE, Uribe S (2018) Three-dimensional quantification of vorticity and helicity from 3D cine PC-MRI using finite-element interpolations. Magn Reson Med 79(1):541–553CrossRef Sotelo J, Urbina J, Valverde I, Mura J, Tejos C, Irarrazaval P, Andia ME, Hurtado DE, Uribe S (2018) Three-dimensional quantification of vorticity and helicity from 3D cine PC-MRI using finite-element interpolations. Magn Reson Med 79(1):541–553CrossRef
16.
go back to reference Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th Edition. Butterworth-Heinemann Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th Edition. Butterworth-Heinemann
17.
go back to reference Töger J, Kanski M, Carlsson M, Kovacs SJ, Söderlind G, Arheden H et al (2012) Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann Biomed Eng 40(12):2652–2662CrossRef Töger J, Kanski M, Carlsson M, Kovacs SJ, Söderlind G, Arheden H et al (2012) Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann Biomed Eng 40(12):2652–2662CrossRef
18.
go back to reference Elbaz MSM, Calkoen EE, Westenberg JJM, Lelieveldt BPF, Wroest AA, Geest R (2014) Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis. J Cardiovasc Magn Reson 16(1):78–90CrossRef Elbaz MSM, Calkoen EE, Westenberg JJM, Lelieveldt BPF, Wroest AA, Geest R (2014) Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis. J Cardiovasc Magn Reson 16(1):78–90CrossRef
19.
go back to reference Hong GR, Pedrizzetti G, Tonti G, Li P, Wei Z, Kim JK, Baweja A, Liu S, Chung N, Houle H, Narula J, Vannan MA (2008) Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. J Am Coll Cardiol Img 1(6):705–717CrossRef Hong GR, Pedrizzetti G, Tonti G, Li P, Wei Z, Kim JK, Baweja A, Liu S, Chung N, Houle H, Narula J, Vannan MA (2008) Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. J Am Coll Cardiol Img 1(6):705–717CrossRef
20.
go back to reference Kräuter C, Reiter U, Reiter C, Nizhnikava V, Masana M, Schmidt A, Fuchsjäger M, Stollberger R, Reiter G (2020) Automated mitral valve vortex ring extraction from 4D-flow MRI. Magn Reson Med 84:3396–3408CrossRef Kräuter C, Reiter U, Reiter C, Nizhnikava V, Masana M, Schmidt A, Fuchsjäger M, Stollberger R, Reiter G (2020) Automated mitral valve vortex ring extraction from 4D-flow MRI. Magn Reson Med 84:3396–3408CrossRef
21.
go back to reference Haller G, Hadjighasem A, Farazmand M, Huhn F (2015) Defining coherent vortices objectively from the vorticity. J Fluid Mech 795(7):136–173 Haller G, Hadjighasem A, Farazmand M, Huhn F (2015) Defining coherent vortices objectively from the vorticity. J Fluid Mech 795(7):136–173
22.
go back to reference Hall JE (2006) Textbook of medical physiology. Quarterly Journal of Experimental Physiology & Cognate Medical Sciences 51(4):380–381 Hall JE (2006) Textbook of medical physiology. Quarterly Journal of Experimental Physiology & Cognate Medical Sciences 51(4):380–381
23.
go back to reference Schmitz L, Koch H, Bein G, Brockmeier K (1998) Left ventricular diastolic function in infants, children, and adolescents. Reference values and analysis of morphologic and physiologic determinants of echocardiographic Doppler flow signals during growth and maturation[J]. J Am Coll Cardiol 32(5):1441–1448CrossRef Schmitz L, Koch H, Bein G, Brockmeier K (1998) Left ventricular diastolic function in infants, children, and adolescents. Reference values and analysis of morphologic and physiologic determinants of echocardiographic Doppler flow signals during growth and maturation[J]. J Am Coll Cardiol 32(5):1441–1448CrossRef
24.
go back to reference Wong KKL, Tu J, Kelso RM, Worthley SG, Sanders P, Mazumdar J, Abbott D (2010) Cardiac flow component analysis. Med Eng Phys 32(2):174–188CrossRef Wong KKL, Tu J, Kelso RM, Worthley SG, Sanders P, Mazumdar J, Abbott D (2010) Cardiac flow component analysis. Med Eng Phys 32(2):174–188CrossRef
25.
go back to reference Raffel M, Willert CE, Wereley ST, Kompenhans J (2017) Particle image velocimetry a practical guide[J]. Experimental Fluid Mechanics 255(3):160–162 Raffel M, Willert CE, Wereley ST, Kompenhans J (2017) Particle image velocimetry a practical guide[J]. Experimental Fluid Mechanics 255(3):160–162
26.
go back to reference Kheradvar A, Rickers C, Morisawa D, Kim M, Hong GR, Pedrizzetti G (2019) Diagnostic and prognostic significance of cardiovascular vortex formation. J Cardiol 74(5):403–411CrossRef Kheradvar A, Rickers C, Morisawa D, Kim M, Hong GR, Pedrizzetti G (2019) Diagnostic and prognostic significance of cardiovascular vortex formation. J Cardiol 74(5):403–411CrossRef
27.
go back to reference Liu IS (2003) On the transformation property of the deformation gradient under a change of frame. J Elast 71:73–80CrossRef Liu IS (2003) On the transformation property of the deformation gradient under a change of frame. J Elast 71:73–80CrossRef
28.
go back to reference Haller G (2016) Dynamic rotation and stretch tensors from a dynamic polar decomposition. Journal of the Mechanics & Physics of Solids 86:70–93CrossRef Haller G (2016) Dynamic rotation and stretch tensors from a dynamic polar decomposition. Journal of the Mechanics & Physics of Solids 86:70–93CrossRef
29.
go back to reference Asami R, Tanaka T, Ki K et al (2017) Accuracy and limitations of vector flow mapping: left ventricular phantom validation using stereo particle image velocimetory. J Echocardiogr 15:57–66CrossRef Asami R, Tanaka T, Ki K et al (2017) Accuracy and limitations of vector flow mapping: left ventricular phantom validation using stereo particle image velocimetory. J Echocardiogr 15:57–66CrossRef
30.
go back to reference Wu JZ, Xiong AK, Yang YT (2005) Axial stretching and vortex definition. Phys Fluids 17(3):69–74CrossRef Wu JZ, Xiong AK, Yang YT (2005) Axial stretching and vortex definition. Phys Fluids 17(3):69–74CrossRef
31.
go back to reference Kilner PJ, Yang GZ, Wilkes AJ, Mohiaddin RH, Firmin DN, Yacoub MH (2000) Asymmetric redirection of flow through the heart. Nature. 404(6779):759–761CrossRef Kilner PJ, Yang GZ, Wilkes AJ, Mohiaddin RH, Firmin DN, Yacoub MH (2000) Asymmetric redirection of flow through the heart. Nature. 404(6779):759–761CrossRef
32.
go back to reference Bermejo J, Benito Y, Alhama M, Yotti R, Martínez-Legazpi P, del Villar CP, Pérez-David E, González-Mansilla A, Santa-Marta C, Barrio A, Fernández-Avilés F, del Álamo JC (2014) Intraventricular vortex properties in nonischemic dilated cardiomyopathy. American Journal of Physiology-Heart Circulatory Physiology 306(5):H718–H729CrossRef Bermejo J, Benito Y, Alhama M, Yotti R, Martínez-Legazpi P, del Villar CP, Pérez-David E, González-Mansilla A, Santa-Marta C, Barrio A, Fernández-Avilés F, del Álamo JC (2014) Intraventricular vortex properties in nonischemic dilated cardiomyopathy. American Journal of Physiology-Heart Circulatory Physiology 306(5):H718–H729CrossRef
33.
go back to reference Stugaard M, Koriyama H, Katsuki K, Masuda K, Asanuma T, Takeda Y, Sakata Y, Itatani K, Nakatani S (2015) Energy loss in the left ventricle obtained by vector flow mapping as a new quantitative measure of severity of aortic regurgitation: a combined experimental and clinical study. Eur Heart J Cardiovasc Imaging 16(7):723–730CrossRef Stugaard M, Koriyama H, Katsuki K, Masuda K, Asanuma T, Takeda Y, Sakata Y, Itatani K, Nakatani S (2015) Energy loss in the left ventricle obtained by vector flow mapping as a new quantitative measure of severity of aortic regurgitation: a combined experimental and clinical study. Eur Heart J Cardiovasc Imaging 16(7):723–730CrossRef
Metadata
Title
Lagrangian-averaged vorticity deviation of spiraling blood flow in the heart during isovolumic contraction and ejection phases
Authors
Ke Yang
Shiqian Wu
Hui Zhang
Dhanjoo N. Ghista
Oluwarotimi W. Samuel
Kelvin K. L. Wong
Publication date
11-06-2021
Publisher
Springer Berlin Heidelberg
Published in
Medical & Biological Engineering & Computing / Issue 7-8/2021
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-021-02366-2

Other articles of this Issue 7-8/2021

Medical & Biological Engineering & Computing 7-8/2021 Go to the issue

Premium Partner