Skip to main content
Top
Published in: Acta Mechanica Sinica 5/2018

23-06-2018 | Research Paper

Lagrangian-based numerical investigation of aerodynamic performance of an oscillating foil

Authors: Mengjie Zhang, Qin Wu, Biao Huang, Guoyu Wang

Published in: Acta Mechanica Sinica | Issue 5/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The dynamic stall problem for blades is related to the general performance of wind turbines, where a varying flow field is introduced with a rapid change of the effective angle of attack (AOA). The objective of this work is to study the aerodynamic performance of a sinusoidally oscillating NACA0012 airfoil. The coupled \(k{-}\omega \) Menter’s shear stress transport (SST) turbulence model and \(\gamma {-}Re_{\uptheta }\) transition model were used for turbulence closure. Lagrangian coherent structures (LCS) were utilized to analyze the dynamic behavior of the flow structures. The computational results were supported by the experiments. The results indicated that this numerical method can well describe the dynamic stall process. For the case with reduced frequency \(K = 0.1\), the lift and drag coefficients increase constantly with increasing angle prior to dynamic stall. When the AOA reaches the stall angle, the lift and drag coefficients decline suddenly due to the interplay between the first leading- and trailing-edge vortex. With further increase of the AOA, both the lift and drag coefficients experience a secondary rise and fall process because of formation and shedding of the secondary vortex. The results also reveal that the dynamic behavior of the flow structures can be effectively identified using the finite-time Lyapunov exponent (FTLE) field. The influence of the reduced frequency on the flow structures and energy extraction efficiency in the dynamic stall process is further discussed. When the reduced frequency increases, the dynamic stall is delayed and the total energy extraction efficiency is enhanced. With \(K = 0.05\), the amplitude of the dynamic coefficients fluctuates more significantly in the poststall process than in the case of \(K = 0.1\).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Melício, R., Mendes, V.M.F., Catalão, J.P.S.: Transient analysis of variable-speed wind turbines at wind speed disturbances and a pitch control malfunction. Appl. Energy 88, 1322–1330 (2011)CrossRef Melício, R., Mendes, V.M.F., Catalão, J.P.S.: Transient analysis of variable-speed wind turbines at wind speed disturbances and a pitch control malfunction. Appl. Energy 88, 1322–1330 (2011)CrossRef
2.
go back to reference González, L.G., Figueres, E., Garcerá, G., et al.: Maximum-power-point tracking with reduced mechanical stress applied to wind-energy-conversion-systems. Appl. Energy 87, 2304–2312 (2010)CrossRef González, L.G., Figueres, E., Garcerá, G., et al.: Maximum-power-point tracking with reduced mechanical stress applied to wind-energy-conversion-systems. Appl. Energy 87, 2304–2312 (2010)CrossRef
3.
go back to reference Karbasian, H.R., Esfahani, J.A., Barati, E.: The power extraction by flapping foil hydrokinetic turbine in swing arm mode. Renew. Energy 88, 130–142 (2016)CrossRef Karbasian, H.R., Esfahani, J.A., Barati, E.: The power extraction by flapping foil hydrokinetic turbine in swing arm mode. Renew. Energy 88, 130–142 (2016)CrossRef
4.
go back to reference Hang, L., Zhou, D., Lu, J., et al.: The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine. Energy 119, 369–383 (2017)CrossRef Hang, L., Zhou, D., Lu, J., et al.: The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine. Energy 119, 369–383 (2017)CrossRef
5.
go back to reference Mckenna, R., Leye, P.O.V.D., Fichtner, W.: Key challenges and prospects for large wind turbines. Renew. Sustain. Energy Rev. 53, 1212–1221 (2016)CrossRef Mckenna, R., Leye, P.O.V.D., Fichtner, W.: Key challenges and prospects for large wind turbines. Renew. Sustain. Energy Rev. 53, 1212–1221 (2016)CrossRef
6.
go back to reference Lu, K., Xie, Y., Zhang, D., et al.: Systematic investigation of the flow evolution and energy extraction performance of a flapping-airfoil power generator. Energy 89, 138–147 (2015)CrossRef Lu, K., Xie, Y., Zhang, D., et al.: Systematic investigation of the flow evolution and energy extraction performance of a flapping-airfoil power generator. Energy 89, 138–147 (2015)CrossRef
7.
go back to reference Huang, B., Wu, Q., Wang, G.Y.: Numerical simulation of unsteady cavitating flows around a transient pitching hydrofoil. Sci. China Technol. Sci. 57, 101–116 (2014)CrossRef Huang, B., Wu, Q., Wang, G.Y.: Numerical simulation of unsteady cavitating flows around a transient pitching hydrofoil. Sci. China Technol. Sci. 57, 101–116 (2014)CrossRef
8.
go back to reference Lee, T.: Effect of flap motion on unsteady aerodynamic loads. J. Aircr. 44, 334–338 (2015) Lee, T.: Effect of flap motion on unsteady aerodynamic loads. J. Aircr. 44, 334–338 (2015)
9.
go back to reference Birch, D.M., Lee, T.: Tip vortex behind a wing undergoing deep-stall oscillation. AIAA J. 43, 2081–2092 (2015)CrossRef Birch, D.M., Lee, T.: Tip vortex behind a wing undergoing deep-stall oscillation. AIAA J. 43, 2081–2092 (2015)CrossRef
10.
go back to reference Liu, T.T., Huang, B., Wang, G.Y., et al.: Experimental investigation of the flow pattern for ventilated partial cavitating flows with effect of Froude number and gas entrainment. Ocean Eng. 129, 343–351 (2017)CrossRef Liu, T.T., Huang, B., Wang, G.Y., et al.: Experimental investigation of the flow pattern for ventilated partial cavitating flows with effect of Froude number and gas entrainment. Ocean Eng. 129, 343–351 (2017)CrossRef
11.
go back to reference Wang, Y.W., Xu, C., Wu, X.C., et al.: Ventilated cloud cavitating flow around a blunt body close to the free surface. Phys. Rev. Fluids 2, 084303 (2017)CrossRef Wang, Y.W., Xu, C., Wu, X.C., et al.: Ventilated cloud cavitating flow around a blunt body close to the free surface. Phys. Rev. Fluids 2, 084303 (2017)CrossRef
12.
go back to reference Long, X.P., Cheng, H.Y., Ji, B., et al.: Large eddy simulation and Euler–Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil. Int. J. Multiph. Flow 100, 41–56 (2018)MathSciNetCrossRef Long, X.P., Cheng, H.Y., Ji, B., et al.: Large eddy simulation and Euler–Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil. Int. J. Multiph. Flow 100, 41–56 (2018)MathSciNetCrossRef
13.
go back to reference Wang, G.Y., Wu, Q., Huang, B.: Dynamics of cavitation–structure interaction. Acta Mech. Sin. 33, 685–708 (2017)CrossRef Wang, G.Y., Wu, Q., Huang, B.: Dynamics of cavitation–structure interaction. Acta Mech. Sin. 33, 685–708 (2017)CrossRef
14.
go back to reference Huang, B., Zhao, Y., Wang, G.Y.: Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows. Comput. Fluids 92, 113–124 (2014)CrossRef Huang, B., Zhao, Y., Wang, G.Y.: Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows. Comput. Fluids 92, 113–124 (2014)CrossRef
15.
go back to reference Choudhry, A., Arjomandi, M., Kelso, R.: Methods to control dynamic stall for wind turbine applications. Renew. Energy 86, 26–37 (2016)CrossRef Choudhry, A., Arjomandi, M., Kelso, R.: Methods to control dynamic stall for wind turbine applications. Renew. Energy 86, 26–37 (2016)CrossRef
16.
go back to reference Hameed, M.S., Afaq, S.K.: Design and analysis of a straight bladed vertical axis wind turbine blade using analytical and numerical techniques. Ocean Eng. 57, 248–255 (2013)CrossRef Hameed, M.S., Afaq, S.K.: Design and analysis of a straight bladed vertical axis wind turbine blade using analytical and numerical techniques. Ocean Eng. 57, 248–255 (2013)CrossRef
17.
go back to reference Huang, B., Young, Y.L., Wang, G.Y., et al.: Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation. J. Fluids Eng. Trans. ASME 135, 071301 (2013)CrossRef Huang, B., Young, Y.L., Wang, G.Y., et al.: Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation. J. Fluids Eng. Trans. ASME 135, 071301 (2013)CrossRef
18.
go back to reference Ferreira, C.S., Bussel, G.V., Kuik, G.V.: 2D CFD simulation of dynamic stall on a vertical axis wind turbine: verification and validation with PIV measurements. In: 45th AIAA Aerospace Sciences Meeting and Exhibit (2006) Ferreira, C.S., Bussel, G.V., Kuik, G.V.: 2D CFD simulation of dynamic stall on a vertical axis wind turbine: verification and validation with PIV measurements. In: 45th AIAA Aerospace Sciences Meeting and Exhibit (2006)
19.
go back to reference Wernert, P., Geissler, W., Raffel, M., et al.: Experimental and numerical investigations of dynamic stall on a pitching airfoil. AIAA J. 34, 982–989 (1996)CrossRef Wernert, P., Geissler, W., Raffel, M., et al.: Experimental and numerical investigations of dynamic stall on a pitching airfoil. AIAA J. 34, 982–989 (1996)CrossRef
20.
go back to reference Lee, T., Gerontakos, P.: Investigation of flow over an oscillating airfoil. J. Fluid Mech. 512, 313–341 (2004)CrossRef Lee, T., Gerontakos, P.: Investigation of flow over an oscillating airfoil. J. Fluid Mech. 512, 313–341 (2004)CrossRef
21.
go back to reference Carr, L.W.: Progress in analysis and prediction of dynamic stall. J. Aircr. 25, 6–17 (1988)CrossRef Carr, L.W.: Progress in analysis and prediction of dynamic stall. J. Aircr. 25, 6–17 (1988)CrossRef
22.
go back to reference Ekaterinaris, J.A., Platzer, M.F.: Computational prediction of airfoil dynamic stall. Prog. Aerosp. Sci. 33, 759–846 (1997)CrossRef Ekaterinaris, J.A., Platzer, M.F.: Computational prediction of airfoil dynamic stall. Prog. Aerosp. Sci. 33, 759–846 (1997)CrossRef
23.
go back to reference Simpson, B.J., Hover, F.S., Triantafyllou, M.S.: Experiments in direct energy extraction through flapping foils. in: the Eighteenth International Offshore and Polar Engineering Conference, 2008 Simpson, B.J., Hover, F.S., Triantafyllou, M.S.: Experiments in direct energy extraction through flapping foils. in: the Eighteenth International Offshore and Polar Engineering Conference, 2008
24.
go back to reference Shehata, A.S., Xiao, Q., Saqr, K.M., et al.: Passive flow control for aerodynamic performance enhancement of airfoil with its application in wells turbine—under oscillating flow condition. Ocean Eng. 136, 31–53 (2017)CrossRef Shehata, A.S., Xiao, Q., Saqr, K.M., et al.: Passive flow control for aerodynamic performance enhancement of airfoil with its application in wells turbine—under oscillating flow condition. Ocean Eng. 136, 31–53 (2017)CrossRef
25.
go back to reference Tseng, C.C., Hu, H.A.: Dynamic behaviors of the flow past a pitching foil based on Eulerian and Lagrangian viewpoints. AIAA J. 54, 712–727 (2016)CrossRef Tseng, C.C., Hu, H.A.: Dynamic behaviors of the flow past a pitching foil based on Eulerian and Lagrangian viewpoints. AIAA J. 54, 712–727 (2016)CrossRef
26.
go back to reference Ducoin, A., Astolfi, J.A., Deniset, F., et al.: Computational and experimental investigation of flow over a transient pitching hydrofoil. Eur. J. Mech. B Fluids 28, 728–743 (2009)MathSciNetCrossRef Ducoin, A., Astolfi, J.A., Deniset, F., et al.: Computational and experimental investigation of flow over a transient pitching hydrofoil. Eur. J. Mech. B Fluids 28, 728–743 (2009)MathSciNetCrossRef
27.
go back to reference Bhat, S.S., Govardhan, R.N.: Stall flutter of NACA 0012 airfoil at low Reynolds numbers. J. Fluids Struct. 41, 166–174 (2013)CrossRef Bhat, S.S., Govardhan, R.N.: Stall flutter of NACA 0012 airfoil at low Reynolds numbers. J. Fluids Struct. 41, 166–174 (2013)CrossRef
28.
go back to reference Wang, S., Ingham, D.B., Ma, L., et al.: Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Comput. Fluids 39, 1529–1541 (2010)CrossRef Wang, S., Ingham, D.B., Ma, L., et al.: Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Comput. Fluids 39, 1529–1541 (2010)CrossRef
29.
go back to reference Huang, B., Ducoin, A., Young, L.Y.: Physical and numerical investigation of cavitating flows around a pitching hydrofoil. Phys. Fluids 25, 102109 (2013)CrossRef Huang, B., Ducoin, A., Young, L.Y.: Physical and numerical investigation of cavitating flows around a pitching hydrofoil. Phys. Fluids 25, 102109 (2013)CrossRef
30.
go back to reference Chen, Y.L., Zhan, J.P., Wu, J., et al.: A fully-activated flapping foil in wind gust: energy harvesting performance investigation. Ocean Eng. 138, 112–122 (2017)CrossRef Chen, Y.L., Zhan, J.P., Wu, J., et al.: A fully-activated flapping foil in wind gust: energy harvesting performance investigation. Ocean Eng. 138, 112–122 (2017)CrossRef
31.
go back to reference Teng, L., Deng, J., Pan, D., et al.: Effects of non-sinusoidal pitching motion on energy extraction performance of a semi-active flapping foil. Renew. Energy 85, 810–818 (2016)CrossRef Teng, L., Deng, J., Pan, D., et al.: Effects of non-sinusoidal pitching motion on energy extraction performance of a semi-active flapping foil. Renew. Energy 85, 810–818 (2016)CrossRef
32.
go back to reference Lai, J.C.S., Platzer, M.F.: Jet characteristics of a plunging airfoil. AIAA J. 37, 1529–1537 (2015)CrossRef Lai, J.C.S., Platzer, M.F.: Jet characteristics of a plunging airfoil. AIAA J. 37, 1529–1537 (2015)CrossRef
33.
go back to reference Gharali, K., Johnson, D.A.: Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity. J. Fluids Struct. 42, 228–244 (2013)CrossRef Gharali, K., Johnson, D.A.: Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity. J. Fluids Struct. 42, 228–244 (2013)CrossRef
34.
go back to reference Guo, Q., Zhou, L., Wang, Z.: Comparison of BEM-CFD and full rotor geometry simulations for the performance and flow field of a marine current turbine. Renew. Energy 75, 640–648 (2015)CrossRef Guo, Q., Zhou, L., Wang, Z.: Comparison of BEM-CFD and full rotor geometry simulations for the performance and flow field of a marine current turbine. Renew. Energy 75, 640–648 (2015)CrossRef
35.
go back to reference Wu, Q., Wang, Y.N., Wang, G.Y.: Experimental investigation of cavitating flow-induced vibration of hydrofoils. Ocean Eng. 144, 50–60 (2017)CrossRef Wu, Q., Wang, Y.N., Wang, G.Y.: Experimental investigation of cavitating flow-induced vibration of hydrofoils. Ocean Eng. 144, 50–60 (2017)CrossRef
36.
go back to reference Wu, Q., Huang, B., Wang, G.Y., et al.: Experimental and numerical investigation of hydroelastic response of a flexible hydrofoil in cavitating flow. Int. J. Multiph. Flow 74, 19–33 (2015)CrossRef Wu, Q., Huang, B., Wang, G.Y., et al.: Experimental and numerical investigation of hydroelastic response of a flexible hydrofoil in cavitating flow. Int. J. Multiph. Flow 74, 19–33 (2015)CrossRef
37.
go back to reference Menter, F,R.: Improved two-equation \(k-\omega \) turbulence models for aerodynamic flows. NASA Tech. Memo. 34, 103975 (1992) Menter, F,R.: Improved two-equation \(k-\omega \) turbulence models for aerodynamic flows. NASA Tech. Memo. 34, 103975 (1992)
38.
go back to reference Langtry, R.B., Menter, F.R., Likki, S.R., et al.: A correlation-based transition model using local variables-part I: model formulation. J. Turbomach. 128, 413–422 (2006)CrossRef Langtry, R.B., Menter, F.R., Likki, S.R., et al.: A correlation-based transition model using local variables-part I: model formulation. J. Turbomach. 128, 413–422 (2006)CrossRef
39.
go back to reference Langtry, R.B., Menter, F.R., Likki, S.R., et al.: A correlation-based transition model using local variables-part II: test cases and industrial applications. J. Turbomach. 128, 423–434 (2006)CrossRef Langtry, R.B., Menter, F.R., Likki, S.R., et al.: A correlation-based transition model using local variables-part II: test cases and industrial applications. J. Turbomach. 128, 423–434 (2006)CrossRef
40.
go back to reference Menter, F.R., Langtry, R.B., Völker, S.: Transition modeling for general purpose CFD codes. Flow Turbul. Combust. 77, 277–303 (2006)CrossRef Menter, F.R., Langtry, R.B., Völker, S.: Transition modeling for general purpose CFD codes. Flow Turbul. Combust. 77, 277–303 (2006)CrossRef
41.
go back to reference Haller, G., Yuan, G.: Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys. D 147, 352–370 (2000)MathSciNetCrossRef Haller, G., Yuan, G.: Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys. D 147, 352–370 (2000)MathSciNetCrossRef
42.
go back to reference Wu, Q., Huang, B., Wang, G.: Lagrangian-based investigation of the transient flow structures around a pitching hydrofoil. Acta Mech. Sin. 32, 64–74 (2016)MathSciNetCrossRef Wu, Q., Huang, B., Wang, G.: Lagrangian-based investigation of the transient flow structures around a pitching hydrofoil. Acta Mech. Sin. 32, 64–74 (2016)MathSciNetCrossRef
43.
go back to reference Tseng, C.C., Liu, P.B.: Dynamic behaviors of the turbulent cavitating flows based on the Eulerian and Lagrangian viewpoints. Int. J. Heat Mass Transf. 102, 479–500 (2016)CrossRef Tseng, C.C., Liu, P.B.: Dynamic behaviors of the turbulent cavitating flows based on the Eulerian and Lagrangian viewpoints. Int. J. Heat Mass Transf. 102, 479–500 (2016)CrossRef
44.
go back to reference Wang, Z.Y., Huang, B., Zhang, M.D., et al.: Experimental and numerical investigation of ventilated cavitating flow structures with special emphasis on vortex shedding dynamics. Int. J. Multiph. Flow 98, 79–95 (2018)CrossRef Wang, Z.Y., Huang, B., Zhang, M.D., et al.: Experimental and numerical investigation of ventilated cavitating flow structures with special emphasis on vortex shedding dynamics. Int. J. Multiph. Flow 98, 79–95 (2018)CrossRef
45.
go back to reference Roache, P.J.: Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid Mech. 29, 123–160 (2003)MathSciNetCrossRef Roache, P.J.: Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid Mech. 29, 123–160 (2003)MathSciNetCrossRef
46.
go back to reference Gohil, P.P., Saini, R.P.: Effect of temperature, suction head and flow velocity on cavitation in a Francis turbine of small hydro power plant. Energy 93, 613–624 (2015)CrossRef Gohil, P.P., Saini, R.P.: Effect of temperature, suction head and flow velocity on cavitation in a Francis turbine of small hydro power plant. Energy 93, 613–624 (2015)CrossRef
47.
go back to reference Roache, P.J.: Verification of codes and calculations. AIAA J. 36, 696–702 (2012)CrossRef Roache, P.J.: Verification of codes and calculations. AIAA J. 36, 696–702 (2012)CrossRef
48.
go back to reference Kwasniewski, L.: Application of grid convergence index in FE computation. Bull. Pol. Acad. Sci. Tech. Sci. 61, 123–128 (2013) Kwasniewski, L.: Application of grid convergence index in FE computation. Bull. Pol. Acad. Sci. Tech. Sci. 61, 123–128 (2013)
49.
go back to reference Kleinhans, M.G., Jagers, H.R.A., Mosselman, E., et al.: Procedure of estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 130, 078001 (2008)CrossRef Kleinhans, M.G., Jagers, H.R.A., Mosselman, E., et al.: Procedure of estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 130, 078001 (2008)CrossRef
50.
go back to reference Hunt, J.C.R., Wray, A.A., Moin, P.: Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88. pp. 193–208 (1988) Hunt, J.C.R., Wray, A.A., Moin, P.: Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88. pp. 193–208 (1988)
51.
go back to reference Choudhry, A., Leknys, R., Arjomandi, M., et al.: An insight into the dynamic stall lift characteristics. Exp. Therm. Fluid Sci. 58, 188–208 (2014)CrossRef Choudhry, A., Leknys, R., Arjomandi, M., et al.: An insight into the dynamic stall lift characteristics. Exp. Therm. Fluid Sci. 58, 188–208 (2014)CrossRef
52.
go back to reference Martinat, G., Braza, M., Hoarau, Y., et al.: Turbulence modeling of the flow past a pitching NACA0012 airfoil at 105 and 106 Reynolds numbers. J. Fluids Struct. 24, 1294–1303 (2008)CrossRef Martinat, G., Braza, M., Hoarau, Y., et al.: Turbulence modeling of the flow past a pitching NACA0012 airfoil at 105 and 106 Reynolds numbers. J. Fluids Struct. 24, 1294–1303 (2008)CrossRef
53.
go back to reference Velkova, C., Todorov, M., Dobrev, I., et al.: Approach for numerical modeling of airfoil dynamic stall. in: Proceedings of BulTrans-2012, 26–28 September, Sozopol, 1–6 (2012) Velkova, C., Todorov, M., Dobrev, I., et al.: Approach for numerical modeling of airfoil dynamic stall. in: Proceedings of BulTrans-2012, 26–28 September, Sozopol, 1–6 (2012)
54.
go back to reference Tseng, C.C., Cheng, Y.E.: Numerical investigations of the vortex interactions for a flow over a pitching foil at different stages. J. Fluids Struct. 58, 291–318 (2015)CrossRef Tseng, C.C., Cheng, Y.E.: Numerical investigations of the vortex interactions for a flow over a pitching foil at different stages. J. Fluids Struct. 58, 291–318 (2015)CrossRef
Metadata
Title
Lagrangian-based numerical investigation of aerodynamic performance of an oscillating foil
Authors
Mengjie Zhang
Qin Wu
Biao Huang
Guoyu Wang
Publication date
23-06-2018
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 5/2018
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-018-0782-z

Other articles of this Issue 5/2018

Acta Mechanica Sinica 5/2018 Go to the issue

Premium Partners