Skip to main content
Top

2017 | OriginalPaper | Chapter

Large-Scale Batteries for Green Energy Society

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An extensive demand for rechargeable batteries from environmental problems due to CO2 emission was described in the introduction. Then, general information about several kinds of batteries for energy storage and electric vehicle applications are described. Specially, lead acid battery, lithium ion battery, sodium-sulfur battery, and redox-flow battery have been discussed based on electrochemical reactions occurring in the practical cells. The energy density of each battery was also discussed in detail based on not only material sciences but also battery technologies. In the future, higher energy density is strongly required for future rechargeable batteries. In the final section, research and development of next generation batteries are involved in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Capsoni D, Bini M, Ferrari S, Quartarone E, Mustarelli P (2012) Recent advances in the development of Li-air batteries. J Power Sources 220:253–263CrossRef Capsoni D, Bini M, Ferrari S, Quartarone E, Mustarelli P (2012) Recent advances in the development of Li-air batteries. J Power Sources 220:253–263CrossRef
2.
go back to reference Luntz AC, McCloskey BD (2014) Nonaqueous Li-air batteries: a status report. Chem Rev 114:11721–11750CrossRef Luntz AC, McCloskey BD (2014) Nonaqueous Li-air batteries: a status report. Chem Rev 114:11721–11750CrossRef
3.
go back to reference Huang S, Cui Z, Zhao N, Sun J, Guo X (2016) Influence of ambient air on cell reactions of Li-air batteries. Electrochim Acta 191:473–478CrossRef Huang S, Cui Z, Zhao N, Sun J, Guo X (2016) Influence of ambient air on cell reactions of Li-air batteries. Electrochim Acta 191:473–478CrossRef
4.
go back to reference Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2011) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29CrossRef Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2011) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29CrossRef
5.
go back to reference Evers S, Nazar LF (2013) New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res 46:1135–1143CrossRef Evers S, Nazar LF (2013) New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res 46:1135–1143CrossRef
6.
go back to reference Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52:13186–13200CrossRef Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52:13186–13200CrossRef
7.
go back to reference Ogasawara Y, Hibino M, Kobayashi H, Kudo T, Asakura D, Nanba Y, Hosono E, Nagamura N, Kitada Y, Honma I, Oshima M, Okuoka S, Ono H, Yonehara K, Sumida Y, Mizuno N (2015) Charge/discharge mechanism of a new Co-doped Li2O cathode material for a rechargeable sealed lithium-peroxide battery analyzed by X-ray absorption spectroscopy. J Power Sources 287:220–225CrossRef Ogasawara Y, Hibino M, Kobayashi H, Kudo T, Asakura D, Nanba Y, Hosono E, Nagamura N, Kitada Y, Honma I, Oshima M, Okuoka S, Ono H, Yonehara K, Sumida Y, Mizuno N (2015) Charge/discharge mechanism of a new Co-doped Li2O cathode material for a rechargeable sealed lithium-peroxide battery analyzed by X-ray absorption spectroscopy. J Power Sources 287:220–225CrossRef
8.
go back to reference Imanishi M, Yamamoto O (2014) Rechargeable lithium-air batteries: characteristics and prospects. Mater Today 17:24–30CrossRef Imanishi M, Yamamoto O (2014) Rechargeable lithium-air batteries: characteristics and prospects. Mater Today 17:24–30CrossRef
9.
go back to reference Moreno N, Caballero A, Morales J, Rodriguez-Castellon E (2016) Improved performance of electrodes based on carbonized olive stones/S composites by impregnating with mesoporous TiO2 for advanced Li-S batteries. J Power Sources 313:21–29CrossRef Moreno N, Caballero A, Morales J, Rodriguez-Castellon E (2016) Improved performance of electrodes based on carbonized olive stones/S composites by impregnating with mesoporous TiO2 for advanced Li-S batteries. J Power Sources 313:21–29CrossRef
10.
go back to reference Kambe Y, Esaki K, Ishiguro Y, Inagaki A, Nozaki K, Enokishima H, Okayama S, Matsuura T, Muramatsu H, Yamada M, Kojima H (2003) Development of lithium-ion battery for vehicles. In: Abstracts of the spring conference for society of automotive engineers of Japan, Inc., March 2003, No. 19-03, p 21 Kambe Y, Esaki K, Ishiguro Y, Inagaki A, Nozaki K, Enokishima H, Okayama S, Matsuura T, Muramatsu H, Yamada M, Kojima H (2003) Development of lithium-ion battery for vehicles. In: Abstracts of the spring conference for society of automotive engineers of Japan, Inc., March 2003, No. 19-03, p 21
11.
go back to reference Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRef Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRef
12.
go back to reference Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301CrossRef Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301CrossRef
13.
go back to reference Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264CrossRef Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264CrossRef
14.
go back to reference Takami N, Inagaki H, Kishi T, Harada Y, Fujita Y, Hoshina K (2009) Electrochemical kinetics and safety of 2-Volt class Li-ion battery system using lithium titanium oxide anode. J Electrochem Soc 156:A128–A132CrossRef Takami N, Inagaki H, Kishi T, Harada Y, Fujita Y, Hoshina K (2009) Electrochemical kinetics and safety of 2-Volt class Li-ion battery system using lithium titanium oxide anode. J Electrochem Soc 156:A128–A132CrossRef
15.
go back to reference Leveau L, Laik B, Pereira-Ramos JP, Gohier A, Tran-Van P, Cojocaru CS (2016) Silicon nano-trees as high areal capacity anodes for lithium-ion batteries. J Power Sources 316:1–7CrossRef Leveau L, Laik B, Pereira-Ramos JP, Gohier A, Tran-Van P, Cojocaru CS (2016) Silicon nano-trees as high areal capacity anodes for lithium-ion batteries. J Power Sources 316:1–7CrossRef
16.
go back to reference Rozier P, Tarascon JM (2015) Review—Li-rich layered oxide cathodes for next-generation Li-Ion batteries: chances and challenges. J Electrochem Soc 162:A2490–A2499CrossRef Rozier P, Tarascon JM (2015) Review—Li-rich layered oxide cathodes for next-generation Li-Ion batteries: chances and challenges. J Electrochem Soc 162:A2490–A2499CrossRef
17.
go back to reference Taniguchi A, Fujioka N, Ikoma M, Ohta A (2001) Development of nickel/metal-hydride batteries for EVs and HEVs. J Power Sources 100:117–124CrossRef Taniguchi A, Fujioka N, Ikoma M, Ohta A (2001) Development of nickel/metal-hydride batteries for EVs and HEVs. J Power Sources 100:117–124CrossRef
18.
go back to reference Liu Y, Pan H, Gao M, Wang Q (2011) Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. J Mater Chem 21:4743–4755CrossRef Liu Y, Pan H, Gao M, Wang Q (2011) Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. J Mater Chem 21:4743–4755CrossRef
19.
go back to reference Oshima T, Kajita M, Okuno A (2004) Development of sodium-sulfur batteries. Appl Ceram Tech 1:269–276CrossRef Oshima T, Kajita M, Okuno A (2004) Development of sodium-sulfur batteries. Appl Ceram Tech 1:269–276CrossRef
20.
go back to reference Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613CrossRef Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613CrossRef
21.
go back to reference Kanamura K, Munakata H, Yong C (2011) Lithium secondary battery separator and method of manufacturing same. JP Patent WO2013084368 A1, 9 Dec 2011 Kanamura K, Munakata H, Yong C (2011) Lithium secondary battery separator and method of manufacturing same. JP Patent WO2013084368 A1, 9 Dec 2011
22.
go back to reference Matsui M (2011) Study on electrochemically deposited Mg metal. J Power Sources 196:7048–7055CrossRef Matsui M (2011) Study on electrochemically deposited Mg metal. J Power Sources 196:7048–7055CrossRef
23.
go back to reference Mizuno F, Takechi K, Higashi S, Shiga T, Shiotsuki T, Takazawa N, Sakurabayashi Y, Okazaki S, Nitta I, Kodama T, Nakamoto H, Nishikoori H, Nakanishi S, Kotani Y, Iba H (2013) Cathode reaction mechanism of non-aqueous Li-O2 batteries with highly oxygen radical stable electrolyte solvent. J Power Sources 228:47–56CrossRef Mizuno F, Takechi K, Higashi S, Shiga T, Shiotsuki T, Takazawa N, Sakurabayashi Y, Okazaki S, Nitta I, Kodama T, Nakamoto H, Nishikoori H, Nakanishi S, Kotani Y, Iba H (2013) Cathode reaction mechanism of non-aqueous Li-O2 batteries with highly oxygen radical stable electrolyte solvent. J Power Sources 228:47–56CrossRef
24.
go back to reference Lee M, Hwang Y, Yun K-H, Chung Y-C (2016) Cathode reaction mechanism on the h-BN/Ni (111) heterostructure for the lithium-oxygen battery. J Power Sources 307:379–384CrossRef Lee M, Hwang Y, Yun K-H, Chung Y-C (2016) Cathode reaction mechanism on the h-BN/Ni (111) heterostructure for the lithium-oxygen battery. J Power Sources 307:379–384CrossRef
25.
go back to reference Zheng D, Zhang X, Wang J, Qu D, Yang X, Qu D (2016) Reduction mechanism of sulfur in lithium-sulfur battery: from elemental sulfur to polysulfide. J Power Sources 301:312–316CrossRef Zheng D, Zhang X, Wang J, Qu D, Yang X, Qu D (2016) Reduction mechanism of sulfur in lithium-sulfur battery: from elemental sulfur to polysulfide. J Power Sources 301:312–316CrossRef
26.
go back to reference Diao Y, Xie K, Xiong S, Hong X (2013) Shuttle phenomenon—the irreversible oxidation mechanism of sulfur active material in Li-S battery. J Power Source 235:181–186CrossRef Diao Y, Xie K, Xiong S, Hong X (2013) Shuttle phenomenon—the irreversible oxidation mechanism of sulfur active material in Li-S battery. J Power Source 235:181–186CrossRef
27.
go back to reference Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Bardé F, Novák P, Bruce PG (2011) Reactions in the rechargeable lithium—O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133:8040–8047CrossRef Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Bardé F, Novák P, Bruce PG (2011) Reactions in the rechargeable lithium—O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133:8040–8047CrossRef
28.
go back to reference Manthiram A, Fu Y, Chung SH, Zu C, Su YH (2014) Rechargeable lithium sulfur batteries. Chem Rev 114:11751–11787CrossRef Manthiram A, Fu Y, Chung SH, Zu C, Su YH (2014) Rechargeable lithium sulfur batteries. Chem Rev 114:11751–11787CrossRef
29.
go back to reference Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151:A1969–A1976CrossRef Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151:A1969–A1976CrossRef
30.
go back to reference Nagao M, Hayashi A, Tatsumisago M (2011) Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte. Electrochim Acta 56:6055–6059CrossRef Nagao M, Hayashi A, Tatsumisago M (2011) Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte. Electrochim Acta 56:6055–6059CrossRef
31.
go back to reference Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi MJ, Chung HY, Park S (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322CrossRef Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi MJ, Chung HY, Park S (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322CrossRef
32.
go back to reference Kato T, Iwasaki S, Ishii Y, Motoyama M, West CW, Yamamoto Y, Iriyama Y (2016) Preparation of thick-film electrode-solid electrolyte composites Li7La3Zr2O12 and their electrochemical properties. J Power Sources 303:65–72CrossRef Kato T, Iwasaki S, Ishii Y, Motoyama M, West CW, Yamamoto Y, Iriyama Y (2016) Preparation of thick-film electrode-solid electrolyte composites Li7La3Zr2O12 and their electrochemical properties. J Power Sources 303:65–72CrossRef
Metadata
Title
Large-Scale Batteries for Green Energy Society
Author
Kiyoshi Kanamura
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-57310-6_7