Skip to main content
Top
Published in: Experiments in Fluids 3/2023

01-03-2023 | Research Article

Large-scale particle shadow tracking and orientation measurement with collimated light

Authors: Lucia Baker, Michelle DiBenedetto

Published in: Experiments in Fluids | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lagrangian particle tracking experiments are a key tool to understanding particle transport in fluid flows. However, tracking particles over long distances is expensive and limited by both the intensity of light and number of cameras. In order to increase the length of measured particle trajectories in a large fluid volume with minimal cost, we developed a large-scale particle-shadow-tracking method. This technique is able to accurately track millimeter-scale particles and their orientations in meter-scale laboratory fluid flows. By tracking the particles’ shadows cast by a wide beam of collimated light from a high-power LED, 2D particle position and velocity can be obtained, as well as their 3D orientation. Compared with traditional volumetric particle tracking techniques, this method is able to measure particle kinematics over a larger area using much simpler imaging and tracking techniques. We demonstrate the method on sphere, disk, and rod particles in a wavy wind-driven flow, where we successfully track particles and reconstruct their orientations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Baker LJ, Coletti F (2021) Particle-fluid-wall interaction of inertial spherical particles in a turbulent boundary layer. J Fluid Mech 908:A39MathSciNetCrossRefMATH Baker LJ, Coletti F (2021) Particle-fluid-wall interaction of inertial spherical particles in a turbulent boundary layer. J Fluid Mech 908:A39MathSciNetCrossRefMATH
go back to reference Baker LJ, Coletti F (2022) Experimental investigation of inertial fibres and disks in a turbulent boundary layer. J Fluid Mech 943:A27CrossRefMATH Baker LJ, Coletti F (2022) Experimental investigation of inertial fibres and disks in a turbulent boundary layer. J Fluid Mech 943:A27CrossRefMATH
go back to reference Bröder D, Sommerfeld M (2007) Planar shadow image velocimetry for the analysis of the hydrodynamics in bubbly flows. Meas Sci Technol 18(8):2513CrossRef Bröder D, Sommerfeld M (2007) Planar shadow image velocimetry for the analysis of the hydrodynamics in bubbly flows. Meas Sci Technol 18(8):2513CrossRef
go back to reference Ebrahimian M, Sanders RS, Ghaemi S (2019) Dynamics and wall collision of inertial particles in a solid-liquid turbulent channel flow. J Fluid Mech 881:872–905MathSciNetCrossRefMATH Ebrahimian M, Sanders RS, Ghaemi S (2019) Dynamics and wall collision of inertial particles in a solid-liquid turbulent channel flow. J Fluid Mech 881:872–905MathSciNetCrossRefMATH
go back to reference Fu S, Biwole P, Mathis C (2015) Particle tracking velocimetry for indoor airflow field: A review. Build Environ 87:34–44CrossRef Fu S, Biwole P, Mathis C (2015) Particle tracking velocimetry for indoor airflow field: A review. Build Environ 87:34–44CrossRef
go back to reference Fujita I, Muste M, Kruger A (1998) Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. J Hydraul Res 36(3):397–414CrossRef Fujita I, Muste M, Kruger A (1998) Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. J Hydraul Res 36(3):397–414CrossRef
go back to reference Gerashchenko S, Sharp NS, Neuscamman S et al (2008) Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer. J Fluid Mech 617:255–281CrossRefMATH Gerashchenko S, Sharp NS, Neuscamman S et al (2008) Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer. J Fluid Mech 617:255–281CrossRefMATH
go back to reference Geyer R, Jambeck J, Law K (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):e1700782CrossRef Geyer R, Jambeck J, Law K (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):e1700782CrossRef
go back to reference Godbersen P, Bosbach J, Schanz D et al (2021) Beauty of turbulent convection: a particle tracking endeavor. Phys Rev Fluids 6(11):110–509CrossRef Godbersen P, Bosbach J, Schanz D et al (2021) Beauty of turbulent convection: a particle tracking endeavor. Phys Rev Fluids 6(11):110–509CrossRef
go back to reference Hessenkemper H, Ziegenhein T (2018) Particle shadow velocimetry (PSV) in bubbly flows. Int J Multip Flow 106:268–279CrossRef Hessenkemper H, Ziegenhein T (2018) Particle shadow velocimetry (PSV) in bubbly flows. Int J Multip Flow 106:268–279CrossRef
go back to reference Hou J, Kaiser F, Sciacchitano A et al (2021) A novel single-camera approach to large-scale, three-dimensional particle tracking based on glare-point spacing. Exp Fluids 62(5):1–10CrossRef Hou J, Kaiser F, Sciacchitano A et al (2021) A novel single-camera approach to large-scale, three-dimensional particle tracking based on glare-point spacing. Exp Fluids 62(5):1–10CrossRef
go back to reference Huhn F, Schanz D, Gesemann S et al (2017) Large-scale volumetric flow measurement in a pure thermal plume by dense tracking of helium-filled soap bubbles. Exp Fluids 58(9):1–19CrossRef Huhn F, Schanz D, Gesemann S et al (2017) Large-scale volumetric flow measurement in a pure thermal plume by dense tracking of helium-filled soap bubbles. Exp Fluids 58(9):1–19CrossRef
go back to reference Kim D, Schanz D, Novara M et al (2022) Experimental study of turbulent bubbly jet. Part 1. Simultaneous measurement of three-dimensional velocity fields of bubbles and water. J Fluid Mech 941:A42 Kim D, Schanz D, Novara M et al (2022) Experimental study of turbulent bubbly jet. Part 1. Simultaneous measurement of three-dimensional velocity fields of bubbles and water. J Fluid Mech 941:A42
go back to reference Long S (1992) NASA wallops flight facility air-sea interaction research facility. National Aeronautics and Space Administration, Scientific and Technical Information Program Long S (1992) NASA wallops flight facility air-sea interaction research facility. National Aeronautics and Space Administration, Scientific and Technical Information Program
go back to reference Masnadi N, Chickadel C, Jessup A (2021) On the thermal signature of the residual foam in breaking waves. J Geophys Res Oceans 126(1):e202JC0016511CrossRef Masnadi N, Chickadel C, Jessup A (2021) On the thermal signature of the residual foam in breaking waves. J Geophys Res Oceans 126(1):e202JC0016511CrossRef
go back to reference Mordant N, Crawford AM, Bodenschatz E (2004) Experimental Lagrangian acceleration probability density function measurement. Physica D 193(1–4):245–251CrossRefMATH Mordant N, Crawford AM, Bodenschatz E (2004) Experimental Lagrangian acceleration probability density function measurement. Physica D 193(1–4):245–251CrossRefMATH
go back to reference Nemes A, Dasari T, Hong J et al (2017) Snowflakes in the atmospheric surface layer: observation of particle-turbulence dynamics. J Fluid Mech 814:592–613MathSciNetCrossRefMATH Nemes A, Dasari T, Hong J et al (2017) Snowflakes in the atmospheric surface layer: observation of particle-turbulence dynamics. J Fluid Mech 814:592–613MathSciNetCrossRefMATH
go back to reference Petersen AJ, Baker L, Coletti F (2019) Experimental study of inertial particles clustering and settling in homogeneous turbulence. J Fluid Mech 864:925–970CrossRef Petersen AJ, Baker L, Coletti F (2019) Experimental study of inertial particles clustering and settling in homogeneous turbulence. J Fluid Mech 864:925–970CrossRef
go back to reference Rosi G, Sherry M, Kinzel M et al (2014) Characterizing the lower log region of the atmospheric surface layer via large-scale particle tracking velocimetry. Exp Fluids 55(5):1–10CrossRef Rosi G, Sherry M, Kinzel M et al (2014) Characterizing the lower log region of the atmospheric surface layer via large-scale particle tracking velocimetry. Exp Fluids 55(5):1–10CrossRef
go back to reference Schröder A, Schanz D, Bosbach J et al (2022) Large-scale volumetric flow studies on transport of aerosol particles using a breathing human model with and without face protections. Phys Fluids 34(3):035–133CrossRef Schröder A, Schanz D, Bosbach J et al (2022) Large-scale volumetric flow studies on transport of aerosol particles using a breathing human model with and without face protections. Phys Fluids 34(3):035–133CrossRef
go back to reference Tan S, Salibindla A, Masuk A et al (2020) Introducing OpenLPT: new method of removing ghost particles and high-concentration particle shadow tracking. Exp Fluids 61(2):1–16CrossRef Tan S, Salibindla A, Masuk A et al (2020) Introducing OpenLPT: new method of removing ghost particles and high-concentration particle shadow tracking. Exp Fluids 61(2):1–16CrossRef
go back to reference Thoman T, Kukulka T, Gamble K (2021) Dispersion of buoyant and sinking particles in a simulated wind-and wave-driven turbulent coastal ocean. J Geophys Res: Oceans 126(3):e2020JC016868CrossRef Thoman T, Kukulka T, Gamble K (2021) Dispersion of buoyant and sinking particles in a simulated wind-and wave-driven turbulent coastal ocean. J Geophys Res: Oceans 126(3):e2020JC016868CrossRef
go back to reference Toloui M, Riley S, Hong J et al (2014) Measurement of atmospheric boundary layer based on super-large-scale particle image velocimetry using natural snowfall. Exp Fluids 55(5):1–14CrossRef Toloui M, Riley S, Hong J et al (2014) Measurement of atmospheric boundary layer based on super-large-scale particle image velocimetry using natural snowfall. Exp Fluids 55(5):1–14CrossRef
go back to reference Tropea C, Yarin AL, Foss J. F. (2007) Springer handbook of experimental fluid mechanics. Springer, Berlin Tropea C, Yarin AL, Foss J. F. (2007) Springer handbook of experimental fluid mechanics. Springer, Berlin
go back to reference van Sebille E, Wilcox C, Lebreton L et al (2015) A global inventory of small floating plastic debris. Environ Res Lett 10(12):124006CrossRef van Sebille E, Wilcox C, Lebreton L et al (2015) A global inventory of small floating plastic debris. Environ Res Lett 10(12):124006CrossRef
go back to reference Voth GA, La Porta A, Crawford AM et al (2002) Measurement of particle accelerations in fully developed turbulence. J Fluid Mech 469:121–160CrossRefMATH Voth GA, La Porta A, Crawford AM et al (2002) Measurement of particle accelerations in fully developed turbulence. J Fluid Mech 469:121–160CrossRefMATH
go back to reference Wei N, Brownstein I, Cardona J et al (2021) Near-wake structure of full-scale vertical-axis wind turbines. J Fluid Mech 914:A17CrossRef Wei N, Brownstein I, Cardona J et al (2021) Near-wake structure of full-scale vertical-axis wind turbines. J Fluid Mech 914:A17CrossRef
go back to reference Zheng S, Longmire E (2014) Perturbing vortex packets in a turbulent boundary layer. J Fluid Mech 748:368–398CrossRef Zheng S, Longmire E (2014) Perturbing vortex packets in a turbulent boundary layer. J Fluid Mech 748:368–398CrossRef
Metadata
Title
Large-scale particle shadow tracking and orientation measurement with collimated light
Authors
Lucia Baker
Michelle DiBenedetto
Publication date
01-03-2023
Publisher
Springer Berlin Heidelberg
Published in
Experiments in Fluids / Issue 3/2023
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-023-03578-y

Other articles of this Issue 3/2023

Experiments in Fluids 3/2023 Go to the issue

Premium Partners