Skip to main content
Top
Published in: Experiments in Fluids 3/2023

01-03-2023 | Research Article

Deep learning-based spatial refinement method for robust high-resolution PIV analysis

Authors: Jun Sung Choi, Eung Soo Kim, Jee Hyun Seong

Published in: Experiments in Fluids | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, we propose a deep learning-based spatial refinement method to provide robust high-resolution velocity fields for particle image velocimetry (PIV) analysis. We modified the architecture of the convolutional neural network (CNN)-based optical flow model, FlowNet2, to receive the subdomain of particle image pair and provide sub-velocity fields to better train the network in small-scale flows. The modified deep learning model was trained with synthetic particle image datasets replicating the various PIV particle conditions. Then, we incorporated the modified CNN into the correlation-based spatial refinement approach to achieve robust multiscale flow measurement. The proposed method was quantitatively validated using synthetic particle image pairs of simple and complex flows. The proposed method successfully refined the velocity fields and estimated the large displacement with good accuracy, whereas the modified deep learning model was trained only for small displacement. The validation results demonstrated that the proposed method is robust under various displacement, particle density, and velocity gradient conditions. The evaluation on real PIV particle image pair in turbulent jet flow and flow over a hill showed that the proposed method captured turbulence structures with high-resolution velocity field and improved performance in multiscale flow measurement. The CNN-based approach has advantages over the classic correlation and global optical flow methods in obtaining velocity fields without averaging, smoothening, nor further parameter tuning processes.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23(1):261–304CrossRef Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23(1):261–304CrossRef
go back to reference Álvarez L, Castano CA, García M, Krissian K, Mazorra L, Salgado A, Sánchez J (2009) A new energy-based method for 3D motion estimation of incompressible PIV flows. Comput vis Image Underst 113(7):802–810CrossRef Álvarez L, Castano CA, García M, Krissian K, Mazorra L, Salgado A, Sánchez J (2009) A new energy-based method for 3D motion estimation of incompressible PIV flows. Comput vis Image Underst 113(7):802–810CrossRef
go back to reference Becker F, Wieneke B, Petra S, Schroder A, Schnorr C (2012) Variational adaptive correlation method for flow estimation. IEEE Trans Image Process 21(6):3053–3065MathSciNetCrossRefMATH Becker F, Wieneke B, Petra S, Schroder A, Schnorr C (2012) Variational adaptive correlation method for flow estimation. IEEE Trans Image Process 21(6):3053–3065MathSciNetCrossRefMATH
go back to reference Brox T, Bruhn A, Papenberg N, Weickert J (2004) High accuracy optical flow estimation based on a theory for warping. In: Pajdla T, Matas J (eds) European conference on computer vision. Springer, Berlin, pp 25–36MATH Brox T, Bruhn A, Papenberg N, Weickert J (2004) High accuracy optical flow estimation based on a theory for warping. In: Pajdla T, Matas J (eds) European conference on computer vision. Springer, Berlin, pp 25–36MATH
go back to reference Cai S, Mémin E, Dérian P, Xu C (2018) Motion estimation under location uncertainty for turbulent fluid flows. Exp Fluids 59(1):1–17CrossRef Cai S, Mémin E, Dérian P, Xu C (2018) Motion estimation under location uncertainty for turbulent fluid flows. Exp Fluids 59(1):1–17CrossRef
go back to reference Cai S, Zhou S, Xu C, Gao Q (2019) Dense motion estimation of particle images via a convolutional neural network. Exp Fluids 60(4):1–16CrossRef Cai S, Zhou S, Xu C, Gao Q (2019) Dense motion estimation of particle images via a convolutional neural network. Exp Fluids 60(4):1–16CrossRef
go back to reference Cassisa C, Simoëns S, Prinet V, Shao L (2011) Subgrid scale formulation of optical flow for the study of turbulent flow. Exp Fluids 51(6):1739–1754CrossRef Cassisa C, Simoëns S, Prinet V, Shao L (2011) Subgrid scale formulation of optical flow for the study of turbulent flow. Exp Fluids 51(6):1739–1754CrossRef
go back to reference Corpetti T, Heitz D, Arroyo G, Mémin E, Santa-Cruz A (2006) Fluid experimental flow estimation based on an optical-flow scheme. Exp Fluids 40(1):80–97CrossRef Corpetti T, Heitz D, Arroyo G, Mémin E, Santa-Cruz A (2006) Fluid experimental flow estimation based on an optical-flow scheme. Exp Fluids 40(1):80–97CrossRef
go back to reference Di Florio D, Di Felice F, Romano GP (2002) Windowing, re-shaping and re-orientation interrogation windows in particle image velocimetry for the investigation of shear flows. Meas Sci Technol 13(7):953CrossRef Di Florio D, Di Felice F, Romano GP (2002) Windowing, re-shaping and re-orientation interrogation windows in particle image velocimetry for the investigation of shear flows. Meas Sci Technol 13(7):953CrossRef
go back to reference Dosovitskiy A, Fischer P, Ilg E, Hausser P, Hazirbas C, Golkov V, Brox T (2015) Flownet: learning optical flow with convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision. pp 2758–2766 Dosovitskiy A, Fischer P, Ilg E, Hausser P, Hazirbas C, Golkov V, Brox T (2015) Flownet: learning optical flow with convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision. pp 2758–2766
go back to reference Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press, CambridgeMATH Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press, CambridgeMATH
go back to reference Hart DP (1999) Super-resolution PIV by recursive local-correlation. J Visualization 10:1–10 Hart DP (1999) Super-resolution PIV by recursive local-correlation. J Visualization 10:1–10
go back to reference Heitz D, Mémin E, Schnörr C (2010) Variational fluid flow measurements from image sequences: synopsis and perspectives. Experiments in Fluids 48:369-393CrossRef Heitz D, Mémin E, Schnörr C (2010) Variational fluid flow measurements from image sequences: synopsis and perspectives. Experiments in Fluids 48:369-393CrossRef
go back to reference Heitz D, Héas P, Mémin E, Carlier J (2008) Dynamic consistent correlation-variational approach for robust optical flow estimation. Exp Fluids 45(4):595–608CrossRef Heitz D, Héas P, Mémin E, Carlier J (2008) Dynamic consistent correlation-variational approach for robust optical flow estimation. Exp Fluids 45(4):595–608CrossRef
go back to reference Huang HT, Fiedler HE, Wang JJ (1993a) Limitation and improvement of PIV. I: limitation of conventional techniques due to deformation of particle image patterns. Exp Fluids 15(3):168–174CrossRef Huang HT, Fiedler HE, Wang JJ (1993a) Limitation and improvement of PIV. I: limitation of conventional techniques due to deformation of particle image patterns. Exp Fluids 15(3):168–174CrossRef
go back to reference Huang HT, Fiedler HE, Wang JJ (1993b) Limitation and improvement of PIV. Part2: particle image distortion, ad novel technique. Exp Fluids 15(3):263–273CrossRef Huang HT, Fiedler HE, Wang JJ (1993b) Limitation and improvement of PIV. Part2: particle image distortion, ad novel technique. Exp Fluids 15(3):263–273CrossRef
go back to reference Hui TW, Tang X, Loy CC (2018) Liteflownet: a lightweight convolutional neural network for optical flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp 8981–8989 Hui TW, Tang X, Loy CC (2018) Liteflownet: a lightweight convolutional neural network for optical flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp 8981–8989
go back to reference Ilg E, Mayer N, Saikia T, Keuper M, Dosovitskiy A, Brox T (2017) Flownet 2.0: evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp 2462–2470 Ilg E, Mayer N, Saikia T, Keuper M, Dosovitskiy A, Brox T (2017) Flownet 2.0: evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp 2462–2470
go back to reference Jambunathan K, Ju XY, Dobbins BN, Ashforth-Frost S (1995) An improved cross correlation technique for particle image velocimetry. Meas Sci Technol 6(5):507CrossRef Jambunathan K, Ju XY, Dobbins BN, Ashforth-Frost S (1995) An improved cross correlation technique for particle image velocimetry. Meas Sci Technol 6(5):507CrossRef
go back to reference Kähler CJ, Astarita T, Vlachos PP, Sakakibara J, Hain R, Discetti S, La Foy R, Cierpka C (2016) Main results of the 4th international PIV challenge. Exp Fluids 57(6):1–71CrossRef Kähler CJ, Astarita T, Vlachos PP, Sakakibara J, Hain R, Discetti S, La Foy R, Cierpka C (2016) Main results of the 4th international PIV challenge. Exp Fluids 57(6):1–71CrossRef
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges CJ, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems, 25. Association for Computing Machinery, New York Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges CJ, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems, 25. Association for Computing Machinery, New York
go back to reference Kumar S, Banerjee S (1998) Development and application of a hierarchical system for digital particle image velocimetry to free-surface turbulence. Phys Fluids 10(1):160–177CrossRef Kumar S, Banerjee S (1998) Development and application of a hierarchical system for digital particle image velocimetry to free-surface turbulence. Phys Fluids 10(1):160–177CrossRef
go back to reference LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
go back to reference Lee Y, Yang H, Yin Z (2017) PIV-DCNN: cascaded deep convolutional neural networks for particle image velocimetry. Exp Fluids 58(12):1–10CrossRef Lee Y, Yang H, Yin Z (2017) PIV-DCNN: cascaded deep convolutional neural networks for particle image velocimetry. Exp Fluids 58(12):1–10CrossRef
go back to reference Liu T (2017) OpenOpticalFlow: an open source program for extraction of velocity fields from flow visualization images. J Open Res Softw 5(1):29CrossRef Liu T (2017) OpenOpticalFlow: an open source program for extraction of velocity fields from flow visualization images. J Open Res Softw 5(1):29CrossRef
go back to reference Liu T, Merat A, Makhmalbaf MHM, Fajardo C, Merati P (2015) Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images. Exp Fluids 56(8):1–23CrossRef Liu T, Merat A, Makhmalbaf MHM, Fajardo C, Merati P (2015) Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images. Exp Fluids 56(8):1–23CrossRef
go back to reference Nogueira J, Lecuona A, Rodriguez PA (1997) Data validation, false vectors correction and derived magnitudes calculation on piv data. Meas Sci Technol 8:1493CrossRef Nogueira J, Lecuona A, Rodriguez PA (1997) Data validation, false vectors correction and derived magnitudes calculation on piv data. Meas Sci Technol 8:1493CrossRef
go back to reference Perrot V, Garcia D (2018) Back to basics in ultrasound velocimetry: tracking speckles by using a standard PIV algorithm. In: 2018 IEEE International Ultrasonics Symposium (IUS). pp 206–212. IEEE Perrot V, Garcia D (2018) Back to basics in ultrasound velocimetry: tracking speckles by using a standard PIV algorithm. In: 2018 IEEE International Ultrasonics Symposium (IUS). pp 206–212. IEEE
go back to reference Raffel M, Willert C, Scarano F, Kahler CJ, Wereley ST, Kompenhans J (2018) Particle image velocimetry: a practical guide, 3rd edn. Springer, BerlinCrossRef Raffel M, Willert C, Scarano F, Kahler CJ, Wereley ST, Kompenhans J (2018) Particle image velocimetry: a practical guide, 3rd edn. Springer, BerlinCrossRef
go back to reference Ruhnau P, Kohlberger T, Schnörr C, Nobach H (2005) Variational optical flow estimation for particle image velocimetry. Exp Fluids 38(1):21–32CrossRef Ruhnau P, Kohlberger T, Schnörr C, Nobach H (2005) Variational optical flow estimation for particle image velocimetry. Exp Fluids 38(1):21–32CrossRef
go back to reference Ruhnau P, Stahl A, Schnörr C (2007) Variational estimation of experimental fluid flows with physics-based spatio-temporal regularization. Meas Sci Technol 18(3):755CrossRef Ruhnau P, Stahl A, Schnörr C (2007) Variational estimation of experimental fluid flows with physics-based spatio-temporal regularization. Meas Sci Technol 18(3):755CrossRef
go back to reference Scarano F (2001) Iterative image deformation methods in PIV. Meas Sci Technol 13(1):R1CrossRef Scarano F (2001) Iterative image deformation methods in PIV. Meas Sci Technol 13(1):R1CrossRef
go back to reference Scarano F (2003) Theory of non-isotropic spatial resolution in PIV. Exp Fluids 35(3):268–277CrossRef Scarano F (2003) Theory of non-isotropic spatial resolution in PIV. Exp Fluids 35(3):268–277CrossRef
go back to reference Scarano F, Riethmuller ML (1999) Iterative multigrid approach in PIV image processing with discrete window offset. Exp Fluids 26(6):513–523CrossRef Scarano F, Riethmuller ML (1999) Iterative multigrid approach in PIV image processing with discrete window offset. Exp Fluids 26(6):513–523CrossRef
go back to reference Scarano F, Riethmuller ML (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29(1):S051–S060 Scarano F, Riethmuller ML (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29(1):S051–S060
go back to reference Seong JH, Song MS, Nunez D, Manera A, Kim ES (2019) Velocity refinement of PIV using global optical flow. Exp Fluids 60(11):1–13CrossRef Seong JH, Song MS, Nunez D, Manera A, Kim ES (2019) Velocity refinement of PIV using global optical flow. Exp Fluids 60(11):1–13CrossRef
go back to reference Theunissen R, Scarano F, Riethmuller ML (2007) An adaptive sampling and windowing interrogation method in PIV. Meas Sci Technol 18(1):275CrossRef Theunissen R, Scarano F, Riethmuller ML (2007) An adaptive sampling and windowing interrogation method in PIV. Meas Sci Technol 18(1):275CrossRef
go back to reference Theunissen R, Scarano F, Riethmuller ML (2010) Spatially adaptive PIV interrogation based on data ensemble. Exp Fluids 48(5):875–887CrossRef Theunissen R, Scarano F, Riethmuller ML (2010) Spatially adaptive PIV interrogation based on data ensemble. Exp Fluids 48(5):875–887CrossRef
go back to reference Wereley ST, Gui L, Meinhart CD (2002) Advanced algorithms for microscale particle image velocimetry. AIAA J 40(6):1047–1055CrossRef Wereley ST, Gui L, Meinhart CD (2002) Advanced algorithms for microscale particle image velocimetry. AIAA J 40(6):1047–1055CrossRef
go back to reference Yang Z, Johnson M (2017) Hybrid particle image velocimetry with the combination of cross-correlation and optical flow method. J Visualization 20(3):625–638CrossRef Yang Z, Johnson M (2017) Hybrid particle image velocimetry with the combination of cross-correlation and optical flow method. J Visualization 20(3):625–638CrossRef
go back to reference Yuan J, Schnörr C, Mémin E (2007) Discrete orthogonal decomposition and variational fluid flow estimation. J Math Imaging vis 28(1):67–80MathSciNetCrossRefMATH Yuan J, Schnörr C, Mémin E (2007) Discrete orthogonal decomposition and variational fluid flow estimation. J Math Imaging vis 28(1):67–80MathSciNetCrossRefMATH
go back to reference Zuiderveld K (1994) Contrast limited adaptive histography equalization. In: Heckbert PS (ed) Graphic gems IV. Academic Press Professional, San Diego, pp 474–485CrossRef Zuiderveld K (1994) Contrast limited adaptive histography equalization. In: Heckbert PS (ed) Graphic gems IV. Academic Press Professional, San Diego, pp 474–485CrossRef
Metadata
Title
Deep learning-based spatial refinement method for robust high-resolution PIV analysis
Authors
Jun Sung Choi
Eung Soo Kim
Jee Hyun Seong
Publication date
01-03-2023
Publisher
Springer Berlin Heidelberg
Published in
Experiments in Fluids / Issue 3/2023
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-023-03595-x

Other articles of this Issue 3/2023

Experiments in Fluids 3/2023 Go to the issue

Premium Partners