Skip to main content
Top
Published in: Journal of Materials Science 24/2015

01-12-2015 | Original Paper

Large-scale synthesis of porous graphene through nanoscale carbothermal reduction etching

Authors: Ming Zhang, Wen Xiao Bao, Xiao Li Liu, Bao Zhi Yu, Zhao Yu Ren, Jin Tao Bai, Hai Ming Fan

Published in: Journal of Materials Science | Issue 24/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Porous graphene, which features nanoscaled pores on the sheets, has shown great potential in many technologically important industries. However, the conversional approaches for the synthesis of porous graphene including high-energy techniques and template etching/growth methods are generally conducted on substrates with high cost and low throughput. Herein, we demonstrate a general and scalable synthetic method for porous graphene via carbothermal reduction reaction using monodisperse zinc oxide nanoparticles. The results indicate that ZnO nanoparticles were first attached on graphene oxide nanosheets by electrostatic interaction, and then undergone a carbothermal reduction reaction at 800 °C to produce the pores on the sheets. While graphene oxide nanosheets were thermally reduced to graphene, all the by-products (carbon monoxide, carbon dioxide, and zinc) escaped from the final products simultaneously. The characterizations of the obtained porous graphene reveal that the pore size is about 11 nm, larger than that of ZnO nanoparticles (~5 nm), which is ascribed to the aggregation of ZnO nanoparticles (~20 nm) on the graphene oxide sheets. These results show the certain correlation among the sizes of pores, ZnO nanoparticles and ZnO aggregations, which gain insight into the controlling of pore size by choosing suitable etching agent.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Seo JS, Whang D, Lee H, Jun Im S, Oh J, Jeon YJ, Kim K (2000) A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404:982–986CrossRef Seo JS, Whang D, Lee H, Jun Im S, Oh J, Jeon YJ, Kim K (2000) A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404:982–986CrossRef
2.
go back to reference Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821CrossRef Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821CrossRef
4.
go back to reference Kumari S, Singh RP (2013) Glycolic acid-functionalized chitosan-Co3O4-Fe3O4 hybrid magnetic nanoparticles-based nanohybrid scaffolds for drug-delivery and tissue engineering. J Mater Sci 48:1524–1532. doi:10.1007/s10853-012-6907-z CrossRef Kumari S, Singh RP (2013) Glycolic acid-functionalized chitosan-Co3O4-Fe3O4 hybrid magnetic nanoparticles-based nanohybrid scaffolds for drug-delivery and tissue engineering. J Mater Sci 48:1524–1532. doi:10.​1007/​s10853-012-6907-z CrossRef
5.
go back to reference Smíšek M, Černý S (1970) Active carbon: manufacture, properties and applications. Elsevier Publishing Company, New York Smíšek M, Černý S (1970) Active carbon: manufacture, properties and applications. Elsevier Publishing Company, New York
6.
go back to reference Sircar S, Golden TC, Rao MB (1996) Activated carbon for gas separation and storage. Carbon 34:1–12CrossRef Sircar S, Golden TC, Rao MB (1996) Activated carbon for gas separation and storage. Carbon 34:1–12CrossRef
7.
go back to reference Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843CrossRef Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843CrossRef
8.
go back to reference Raimondo M, Perez G, Sinibaldi M, áDe Stefanis A, Tomlinson A (1997) Mesoporous M41S materials in capillary gas chromatography. Chem Commun 15:1343–1344CrossRef Raimondo M, Perez G, Sinibaldi M, áDe Stefanis A, Tomlinson A (1997) Mesoporous M41S materials in capillary gas chromatography. Chem Commun 15:1343–1344CrossRef
9.
go back to reference Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRef Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRef
10.
go back to reference Huang X, Zeng ZY, Fan ZX, Liu JQ, Zhang H (2012) Graphene-based electrodes. Adv Mater 24:5979–6004CrossRef Huang X, Zeng ZY, Fan ZX, Liu JQ, Zhang H (2012) Graphene-based electrodes. Adv Mater 24:5979–6004CrossRef
11.
go back to reference Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214CrossRef Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214CrossRef
12.
go back to reference Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko JA (2010) Graphene as a subnanometre trans-electrode membrane. Nature 467:190–193CrossRef Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko JA (2010) Graphene as a subnanometre trans-electrode membrane. Nature 467:190–193CrossRef
13.
go back to reference Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541CrossRef Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541CrossRef
14.
go back to reference Choi BG, Chang SJ, Lee YB, Bae SJ, Kim HJ, Huh YS (2012) 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries. Nanoscale 4:5924–5930CrossRef Choi BG, Chang SJ, Lee YB, Bae SJ, Kim HJ, Huh YS (2012) 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries. Nanoscale 4:5924–5930CrossRef
15.
go back to reference Han TH, Huang YK, Tan ATL, Huang JX (2011) Steam etched porous graphene oxide network for chemical sensing. J Am Chem Soc 133:15264–15267CrossRef Han TH, Huang YK, Tan ATL, Huang JX (2011) Steam etched porous graphene oxide network for chemical sensing. J Am Chem Soc 133:15264–15267CrossRef
16.
go back to reference Bi HC, Xie X, Yin KB, Zhou YL, Wan S, He LB, Xu F, Banhart F, Sun LT, Ruoff RS (2012) Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Funct Mater 22:4421–4425CrossRef Bi HC, Xie X, Yin KB, Zhou YL, Wan S, He LB, Xu F, Banhart F, Sun LT, Ruoff RS (2012) Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Funct Mater 22:4421–4425CrossRef
17.
go back to reference Huang JL, Wang JY, Wang CW, Zhang HN, Lu CX, Wang JZ (2015) Hierarchical porous graphene carbon-Based supercapacitors. Chem Mater 27:2107–2113CrossRef Huang JL, Wang JY, Wang CW, Zhang HN, Lu CX, Wang JZ (2015) Hierarchical porous graphene carbon-Based supercapacitors. Chem Mater 27:2107–2113CrossRef
18.
go back to reference Zhou M, Tian T, Li X, Sun X, Zhang J, Chen Y, Qin LC (2013) Supercapacitance of chemically converted graphene with composite pores. Chem Phys Lett 581:64–69CrossRef Zhou M, Tian T, Li X, Sun X, Zhang J, Chen Y, Qin LC (2013) Supercapacitance of chemically converted graphene with composite pores. Chem Phys Lett 581:64–69CrossRef
19.
go back to reference Fischbein MD, Drndić M (2008) Electron beam nanosculpting of suspended graphene sheets. Appl Phys Lett 93:113107CrossRef Fischbein MD, Drndić M (2008) Electron beam nanosculpting of suspended graphene sheets. Appl Phys Lett 93:113107CrossRef
20.
go back to reference Wang YD, Boden SA, Bagnall DM, Rutt HN, Groot CH (2012) Helium ion beam milling to create a nano-structured domain wall magnetoresistance spin valve. Nanotechnology 23:395302CrossRef Wang YD, Boden SA, Bagnall DM, Rutt HN, Groot CH (2012) Helium ion beam milling to create a nano-structured domain wall magnetoresistance spin valve. Nanotechnology 23:395302CrossRef
21.
go back to reference Koenig SP, Wang L, Pellegrino J, Bunch JS (2012) Selective molecular sieving through porous graphene. Nat Nanotechnol 7:728–732CrossRef Koenig SP, Wang L, Pellegrino J, Bunch JS (2012) Selective molecular sieving through porous graphene. Nat Nanotechnol 7:728–732CrossRef
22.
go back to reference Bai JW, Zhang X, Jian S, Huang Y, Duan XF (2010) Graphene nanomesh. Nat Nanotechnol 5:190–194CrossRef Bai JW, Zhang X, Jian S, Huang Y, Duan XF (2010) Graphene nanomesh. Nat Nanotechnol 5:190–194CrossRef
23.
go back to reference Safron NS, Brewer AS, Arnold MS (2011) Semiconducting two-dimensional graphene nanoconstriction arrays. Small 7:492–498CrossRef Safron NS, Brewer AS, Arnold MS (2011) Semiconducting two-dimensional graphene nanoconstriction arrays. Small 7:492–498CrossRef
24.
go back to reference Safron NS, Kim M, Gopalan P, Arnold MS (2012) Barrier-guided growth of micro-and nano-structured graphene. Adv Mater 24:1041–1045CrossRef Safron NS, Kim M, Gopalan P, Arnold MS (2012) Barrier-guided growth of micro-and nano-structured graphene. Adv Mater 24:1041–1045CrossRef
25.
26.
go back to reference Strubel P, Thieme S, Biemelt T, Helmer A, Oschatz M, Brückner J, Althues H, Kaskel S (2015) ZnO hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithium-sulfur battery. Adv Funct Mater 25:287–297CrossRef Strubel P, Thieme S, Biemelt T, Helmer A, Oschatz M, Brückner J, Althues H, Kaskel S (2015) ZnO hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithium-sulfur battery. Adv Funct Mater 25:287–297CrossRef
27.
go back to reference Spanhel L, Anderson MA (1991) Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J Am Chem Soc 113:2826–2833CrossRef Spanhel L, Anderson MA (1991) Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J Am Chem Soc 113:2826–2833CrossRef
28.
go back to reference Zhao PH, Li WL, Wang G, Yu BZ, Li XJ, Bai JT, Ren ZY (2014) Facile hydrothermal fabrication of nitrogen-doped graphene/Fe2O3 composites as high performance electrode materials for supercapacitor. J Alloy Compd 604:87–93CrossRef Zhao PH, Li WL, Wang G, Yu BZ, Li XJ, Bai JT, Ren ZY (2014) Facile hydrothermal fabrication of nitrogen-doped graphene/Fe2O3 composites as high performance electrode materials for supercapacitor. J Alloy Compd 604:87–93CrossRef
29.
go back to reference Zhan ZY, Zheng LX, Pan YZ, Sun GZ, Li L (2012) Self-powered, visible-light photodetector based on thermally reduced graphene oxide-ZnO (rGO-ZnO) hybrid nanostructure. J Mater Chem 22:2589–2595CrossRef Zhan ZY, Zheng LX, Pan YZ, Sun GZ, Li L (2012) Self-powered, visible-light photodetector based on thermally reduced graphene oxide-ZnO (rGO-ZnO) hybrid nanostructure. J Mater Chem 22:2589–2595CrossRef
30.
go back to reference Tuinstra R, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130CrossRef Tuinstra R, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130CrossRef
31.
go back to reference Li XH, Zhu H, Feng J, Zhang JW, Deng X, Zhou BF, Zhang HL, Xue DS, Li FS, Mellors NJ, Li YF, Peng Y (2013) One-pot polylol synthesis of graphene decorated with size-and density-tunable Fe3O4 nanoparticles for porcine pancreatic lipase immobilization. Carbon 60:488–497CrossRef Li XH, Zhu H, Feng J, Zhang JW, Deng X, Zhou BF, Zhang HL, Xue DS, Li FS, Mellors NJ, Li YF, Peng Y (2013) One-pot polylol synthesis of graphene decorated with size-and density-tunable Fe3O4 nanoparticles for porcine pancreatic lipase immobilization. Carbon 60:488–497CrossRef
32.
go back to reference Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41CrossRef Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41CrossRef
33.
go back to reference McAllister MJ, Li JL, Adamson DH, Hannes CS, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404CrossRef McAllister MJ, Li JL, Adamson DH, Hannes CS, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404CrossRef
34.
go back to reference Cao J, Qi GQ, Ke K, Luo Y, Yang W, Xie BH, Yang MB (2012) Effect of temperature and time on the exfoliation and de-oxygenation of graphite oxide by thermal reduction. J Mater Sci 47:5097–5105. doi:10.1007/s10853-012-6383-5 CrossRef Cao J, Qi GQ, Ke K, Luo Y, Yang W, Xie BH, Yang MB (2012) Effect of temperature and time on the exfoliation and de-oxygenation of graphite oxide by thermal reduction. J Mater Sci 47:5097–5105. doi:10.​1007/​s10853-012-6383-5 CrossRef
35.
go back to reference Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73CrossRef Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73CrossRef
36.
go back to reference Li XH, Feng J, Du YP, Bai JT, Fan HM, Zhang HL, Peng Y, Li FS (2015) One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J Mater Chem A 3:5535–5546CrossRef Li XH, Feng J, Du YP, Bai JT, Fan HM, Zhang HL, Peng Y, Li FS (2015) One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J Mater Chem A 3:5535–5546CrossRef
37.
go back to reference Larciprete R, Fabris S, Sun T, Lacovig P, Baraldi A, Lizzit S (2011) Dual path mechanism in the thermal reduction of graphene oxide. J Am Chem Soc 43:17315–17321CrossRef Larciprete R, Fabris S, Sun T, Lacovig P, Baraldi A, Lizzit S (2011) Dual path mechanism in the thermal reduction of graphene oxide. J Am Chem Soc 43:17315–17321CrossRef
38.
go back to reference Krishnamoorthy K, Mohan R, Kim SJ (2011) Graphene oxide as a photocatalytic material. Appl Phys Lett 98:244101CrossRef Krishnamoorthy K, Mohan R, Kim SJ (2011) Graphene oxide as a photocatalytic material. Appl Phys Lett 98:244101CrossRef
39.
go back to reference Fonoberov VA, Balandin AA (2004) Origin of ultraviolet photoluminescence in ZnO quantum dots: confined excitons versus surface-bound impurity exciton complexes. Appl Phys Lett 85:5971–5973CrossRef Fonoberov VA, Balandin AA (2004) Origin of ultraviolet photoluminescence in ZnO quantum dots: confined excitons versus surface-bound impurity exciton complexes. Appl Phys Lett 85:5971–5973CrossRef
40.
go back to reference Chen W, Yan L, Bangal PR (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48:1146–1152CrossRef Chen W, Yan L, Bangal PR (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48:1146–1152CrossRef
41.
go back to reference Livneh T, Haslett TL, Moskovits M (2002) Distinguishing disorder-induced bands from allowed Raman bands in graphit. Phys Rev B 66:195110CrossRef Livneh T, Haslett TL, Moskovits M (2002) Distinguishing disorder-induced bands from allowed Raman bands in graphit. Phys Rev B 66:195110CrossRef
42.
go back to reference Nemanich RJ, Solin SA (1979) First-and second-order Raman scattering from finite-size crystals of graphite. Phys Rev B 20:392CrossRef Nemanich RJ, Solin SA (1979) First-and second-order Raman scattering from finite-size crystals of graphite. Phys Rev B 20:392CrossRef
43.
go back to reference Cancado LG, Pimenta MA, Neves BRA, Dantas MSS, Jorio A (2004) Influence of the atomic structure on the Raman spectra of graphite edges. Phys Rev Lett 93:247401CrossRef Cancado LG, Pimenta MA, Neves BRA, Dantas MSS, Jorio A (2004) Influence of the atomic structure on the Raman spectra of graphite edges. Phys Rev Lett 93:247401CrossRef
44.
go back to reference Fan ZJ, Zhao QK, Li TY, Ren YM, Feng J, Wei T (2012) Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon 50:1699–1703CrossRef Fan ZJ, Zhao QK, Li TY, Ren YM, Feng J, Wei T (2012) Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon 50:1699–1703CrossRef
45.
go back to reference Liu C, Yu Z, Neff D, Zhamu A, Jang ZB (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868CrossRef Liu C, Yu Z, Neff D, Zhamu A, Jang ZB (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868CrossRef
46.
go back to reference Lei Z, Christov N, Zhao XS (2011) Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes. Energy Environ Sci 4:1866–1873CrossRef Lei Z, Christov N, Zhao XS (2011) Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes. Energy Environ Sci 4:1866–1873CrossRef
Metadata
Title
Large-scale synthesis of porous graphene through nanoscale carbothermal reduction etching
Authors
Ming Zhang
Wen Xiao Bao
Xiao Li Liu
Bao Zhi Yu
Zhao Yu Ren
Jin Tao Bai
Hai Ming Fan
Publication date
01-12-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 24/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9309-1

Other articles of this Issue 24/2015

Journal of Materials Science 24/2015 Go to the issue

Premium Partners