Skip to main content
Top
Published in: Journal of Materials Science 24/2015

01-12-2015 | Original Paper

Bath temperature and deposition potential dependences of CuSCN nanorod arrays prepared by electrochemical deposition

Published in: Journal of Materials Science | Issue 24/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, we report on the electrodeposition of p-type semiconductor copper thiocyanate (CuSCN) nanorods on ITO substrate from an aqueous solution. The influence of the bath temperature and deposition potential on the properties of CuSCN layers was studied. Nanorods deposited at low temperature (25 °C) exhibited better crystalline quality and orientation along the c-axis than the nanorods grown at elevated temperatures. The deposition potential turned out to influence strongly the crystallographic orientation, the morphology, as well as the optical properties of the product. Mott–Schottky measurement demonstrates that the CuSCN nanorods are p-type semiconductor, with a hole concentration (N A) eight times larger than that of the 2D thin films when the cylindrical geometry of the nanorods was taken into consideration. The CuSCN nanorods obtained in this study can be used as inexpensive inorganic hole-transporting material in solar energy application and it offers new possibilities to fabricate nanostructured solar cells in reversed process, which starts from the formation of nanostructured p-type electrode.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051CrossRef Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051CrossRef
2.
go back to reference Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Gräetzel M (2012) Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134(42):17396–17399CrossRef Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Gräetzel M (2012) Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134(42):17396–17399CrossRef
3.
go back to reference Im JH, Lee CR, Lee JW, Park SW, Park NG (2011) 6.5 % efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10):4088–4093CrossRef Im JH, Lee CR, Lee JW, Park SW, Park NG (2011) 6.5 % efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10):4088–4093CrossRef
4.
go back to reference Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gräetzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %. Sci Rep 2(591):1–7 Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gräetzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %. Sci Rep 2(591):1–7
5.
go back to reference Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107):643–647CrossRef Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107):643–647CrossRef
6.
go back to reference Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458):316–319CrossRef Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458):316–319CrossRef
7.
go back to reference Zhou H, Chen Q, Li G, Luo S, Song T-b, Duan H-S, You J, You J, Liu Y, Yang Y (2014) Interface engineering of highly efficient perovskite solar cells. Science 345(6196):542–546CrossRef Zhou H, Chen Q, Li G, Luo S, Song T-b, Duan H-S, You J, You J, Liu Y, Yang Y (2014) Interface engineering of highly efficient perovskite solar cells. Science 345(6196):542–546CrossRef
8.
go back to reference Heo JH, Im SH, Noh JH, Mandal TN, Lim CS, Chang JA, Lee YH, Kim H-J, Sarkar A, Nazeeruddin MK, Gräetzel M, Seok SI (2013) Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photonics 7(6):487–492CrossRef Heo JH, Im SH, Noh JH, Mandal TN, Lim CS, Chang JA, Lee YH, Kim H-J, Sarkar A, Nazeeruddin MK, Gräetzel M, Seok SI (2013) Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photonics 7(6):487–492CrossRef
9.
go back to reference Malinkiewicz O, Yella A, Lee YH, Espallargas GM, Graetzel M, Nazeeruddin MK, Bolink HJ (2014) Perovskite solar cells employing organic charge-transport layers. Nat Photonics 8(2):128–132CrossRef Malinkiewicz O, Yella A, Lee YH, Espallargas GM, Graetzel M, Nazeeruddin MK, Bolink HJ (2014) Perovskite solar cells employing organic charge-transport layers. Nat Photonics 8(2):128–132CrossRef
10.
go back to reference Jeon NJ, Lee J, Noh JH, Nazeeruddin MK, Gräetzel M, Seok SI (2013) Efficient inorganic organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. J Am Chem Soc 135(51):19087–19090CrossRef Jeon NJ, Lee J, Noh JH, Nazeeruddin MK, Gräetzel M, Seok SI (2013) Efficient inorganic organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. J Am Chem Soc 135(51):19087–19090CrossRef
11.
go back to reference Edri E, Kirmayer S, Henning A, Mukhopadhyay S, Gartsman K, Rosenwaks Y, Hodes G, Cahen D (2014) Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett 14:1000–1004CrossRef Edri E, Kirmayer S, Henning A, Mukhopadhyay S, Gartsman K, Rosenwaks Y, Hodes G, Cahen D (2014) Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett 14:1000–1004CrossRef
12.
go back to reference Pattanasattayavong P, Ndjawa GON, Zhao K, Chou KW, Yaacobi-Gross N, O’Regan BC, Amassian A, Anthopoulos TD (2012) Electric field-induced hole transport in copper(i) thiocyanate (CuSCN) thin-films processed from solution at room temperature. Chem Commun 49:4154–4156CrossRef Pattanasattayavong P, Ndjawa GON, Zhao K, Chou KW, Yaacobi-Gross N, O’Regan BC, Amassian A, Anthopoulos TD (2012) Electric field-induced hole transport in copper(i) thiocyanate (CuSCN) thin-films processed from solution at room temperature. Chem Commun 49:4154–4156CrossRef
13.
go back to reference Pattanasattayavong P, Yaacobi-Gross N, Zhao K, Ndjawa GON, Li J, Yan F, O’Regan BC, Amassian A, Anthopoulos TD (2013) Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper(I) thiocyanate (CuSCN) processed from solution at room temperature. Adv Mater 25:1504–1509CrossRef Pattanasattayavong P, Yaacobi-Gross N, Zhao K, Ndjawa GON, Li J, Yan F, O’Regan BC, Amassian A, Anthopoulos TD (2013) Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper(I) thiocyanate (CuSCN) processed from solution at room temperature. Adv Mater 25:1504–1509CrossRef
14.
go back to reference Kumara G, Konno A, Senadeera GKR, Jayaweera PVV, De Silva D, Tennakone K (2001) Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide. Sol Energy Mater Sol Cells 69(2):195–199CrossRef Kumara G, Konno A, Senadeera GKR, Jayaweera PVV, De Silva D, Tennakone K (2001) Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide. Sol Energy Mater Sol Cells 69(2):195–199CrossRef
15.
go back to reference Perera VPS, Senevirathna MKI, Pitigala P, Tennakone K (2005) Doping CuSCN films for enhancement of conductivity: application in dye-sensitized solid-state solar cells. Sol Energy Mater Sol Cells 86(3):443–450CrossRef Perera VPS, Senevirathna MKI, Pitigala P, Tennakone K (2005) Doping CuSCN films for enhancement of conductivity: application in dye-sensitized solid-state solar cells. Sol Energy Mater Sol Cells 86(3):443–450CrossRef
16.
go back to reference Sankapal BR, Goncalves E, Ennaoui A, Lux-Steiner MC (2004) Wide band gap p-type windows by CBD and SILAR methods. Thin Solid Films 451:128–132CrossRef Sankapal BR, Goncalves E, Ennaoui A, Lux-Steiner MC (2004) Wide band gap p-type windows by CBD and SILAR methods. Thin Solid Films 451:128–132CrossRef
17.
go back to reference Gao XD, Li XM, Yu WD, Qiu JJ, Gan XY (2008) Room-temperature deposition of nanocrystalline CuSCN film by the modified successive ionic layer adsorption and reaction method. Thin Solid Films 517(2):554–559CrossRef Gao XD, Li XM, Yu WD, Qiu JJ, Gan XY (2008) Room-temperature deposition of nanocrystalline CuSCN film by the modified successive ionic layer adsorption and reaction method. Thin Solid Films 517(2):554–559CrossRef
18.
go back to reference Wu WB, Jin ZG, Hua Z, Fu YN, Qiu JJ (2005) Growth mechanisms of CuSCN films electrodeposited on ITO in EDTA-chelated copper(II) and KSCN aqueous solution. Electrochim Acta 50(11):2343–2349CrossRef Wu WB, Jin ZG, Hua Z, Fu YN, Qiu JJ (2005) Growth mechanisms of CuSCN films electrodeposited on ITO in EDTA-chelated copper(II) and KSCN aqueous solution. Electrochim Acta 50(11):2343–2349CrossRef
19.
go back to reference Liu C, Wu WB, Liu K, Li M, Hu G, Xu H (2012) Orientation growth and electrical property of CuSCN films associated with the surface states. CrystEngComm 14(20):6750–6754CrossRef Liu C, Wu WB, Liu K, Li M, Hu G, Xu H (2012) Orientation growth and electrical property of CuSCN films associated with the surface states. CrystEngComm 14(20):6750–6754CrossRef
20.
go back to reference O’Regan B, Schwartz DT (1995) Efficient photo-hole injection from adsorbed cyanine dyes into electrodeposited copper(Ι) thiocyanate thin films. Chem Mater 7:1349–1354CrossRef O’Regan B, Schwartz DT (1995) Efficient photo-hole injection from adsorbed cyanine dyes into electrodeposited copper(Ι) thiocyanate thin films. Chem Mater 7:1349–1354CrossRef
21.
go back to reference Huang MC, Wang T, Tseng YT, Wu CC, Lin JC, Hsu WY, Chang WS, Chen IC, Peng KC (2015) Influence of annealing on microstructural and photoelectrochemical characteristics of CuSCN thin films via electrochemical process. J Alloys Compd 622:669–675CrossRef Huang MC, Wang T, Tseng YT, Wu CC, Lin JC, Hsu WY, Chang WS, Chen IC, Peng KC (2015) Influence of annealing on microstructural and photoelectrochemical characteristics of CuSCN thin films via electrochemical process. J Alloys Compd 622:669–675CrossRef
22.
go back to reference Selk Y, Yoshida T, Oekermann T (2008) Variation of the morphology of electrodeposited copper thiocyanate films. Thin Solid Films 516(20):7120–7124CrossRef Selk Y, Yoshida T, Oekermann T (2008) Variation of the morphology of electrodeposited copper thiocyanate films. Thin Solid Films 516(20):7120–7124CrossRef
23.
go back to reference Kamiya K, Hashimoto K, Nakanishi S (2012) Acceleration effect of adsorbed thiocyanate ions on electrodeposition of CuSCN, causing spontaneous electrochemical oscillation. Chem Phys Lett 530:77–80CrossRef Kamiya K, Hashimoto K, Nakanishi S (2012) Acceleration effect of adsorbed thiocyanate ions on electrodeposition of CuSCN, causing spontaneous electrochemical oscillation. Chem Phys Lett 530:77–80CrossRef
24.
go back to reference Engelhardt R, Könenkamp R (2001) Electrodeposition of compound semiconductors in polymer channels of 100 nm diameter. J Appl Phys 90:4287–4289CrossRef Engelhardt R, Könenkamp R (2001) Electrodeposition of compound semiconductors in polymer channels of 100 nm diameter. J Appl Phys 90:4287–4289CrossRef
25.
go back to reference Chappaz-Gillot C, Salazar R, Berson S, Ivanova V (2012) Room temperature template-free electrodeposition of CuSCN nanowires. Electrochem Commun 24:1–4CrossRef Chappaz-Gillot C, Salazar R, Berson S, Ivanova V (2012) Room temperature template-free electrodeposition of CuSCN nanowires. Electrochem Commun 24:1–4CrossRef
26.
go back to reference Sanchez S, Chappaz-Gillot C, Salazar R, Muguerra H, Arbaoui E, Berson S, Lévy-Clément C, Ivanova V (2012) Comparative study of ZnO and CuSCN semiconducting nanowire electrodeposition on different substrates. J Solid State Electrochem 17:391–398CrossRef Sanchez S, Chappaz-Gillot C, Salazar R, Muguerra H, Arbaoui E, Berson S, Lévy-Clément C, Ivanova V (2012) Comparative study of ZnO and CuSCN semiconducting nanowire electrodeposition on different substrates. J Solid State Electrochem 17:391–398CrossRef
27.
go back to reference Aldakov D, Chappaz-Gillot C, Salazar R, Delaye V, Welsby KA, Ivanova V, Dunstan PR (2014) Properties of electrodeposited CuSCN 2D layers and nanowires influenced by their mixed domain structure. J Phys Chem C 118(29):16095–16103CrossRef Aldakov D, Chappaz-Gillot C, Salazar R, Delaye V, Welsby KA, Ivanova V, Dunstan PR (2014) Properties of electrodeposited CuSCN 2D layers and nanowires influenced by their mixed domain structure. J Phys Chem C 118(29):16095–16103CrossRef
28.
go back to reference Chappaz-Gillot C, Berson S, Salazar R, Lechêne B, Aldakov D, Delaye V, Guillerez S, Ivanova V (2014) Polymer solar cells with electrodeposited CuSCN nanowires as new efficient hole transporting layer. Sol Energy Mater Sol Cells 120:163–167CrossRef Chappaz-Gillot C, Berson S, Salazar R, Lechêne B, Aldakov D, Delaye V, Guillerez S, Ivanova V (2014) Polymer solar cells with electrodeposited CuSCN nanowires as new efficient hole transporting layer. Sol Energy Mater Sol Cells 120:163–167CrossRef
29.
go back to reference Wu WB (2005) Diploma Thesis, Tianjin University, China Wu WB (2005) Diploma Thesis, Tianjin University, China
30.
go back to reference Wan LJ, Yau SL, Itaya K (1997) Structure of thiocyanate adlayers on Rh(111): an in situ STM study. J Solid State Electrochem 1(1):45–52CrossRef Wan LJ, Yau SL, Itaya K (1997) Structure of thiocyanate adlayers on Rh(111): an in situ STM study. J Solid State Electrochem 1(1):45–52CrossRef
31.
go back to reference Ji W, Yue GQ, Ke FS, Wu S, Zhao HB, Chen LY, Wang SY, Jia Y (2012) Electronic Structures and Optical Properties of CuSCN with Cu Vacancies. J Korean Phys Soc 60(8):1253–1257CrossRef Ji W, Yue GQ, Ke FS, Wu S, Zhao HB, Chen LY, Wang SY, Jia Y (2012) Electronic Structures and Optical Properties of CuSCN with Cu Vacancies. J Korean Phys Soc 60(8):1253–1257CrossRef
32.
go back to reference Ni Y, Jin Z, FuY (2007) Electrodeposition of p-type CuSCN thin films by a new aqueous electrolyte with triethanolamine chelation. J Am Ceram Soc 90(9):2966–2973CrossRef Ni Y, Jin Z, FuY (2007) Electrodeposition of p-type CuSCN thin films by a new aqueous electrolyte with triethanolamine chelation. J Am Ceram Soc 90(9):2966–2973CrossRef
33.
go back to reference Shaaban ER (2014) Microstructure parameters and optical properties of cadmium ferrite thin films of variable thickness. Appl Phys A 115:919–925CrossRef Shaaban ER (2014) Microstructure parameters and optical properties of cadmium ferrite thin films of variable thickness. Appl Phys A 115:919–925CrossRef
34.
go back to reference Mora-Seró Iván, Fabregat-Santiago F, Denier B, Bisquert J (2006) Determination of carrier density of ZnO nanowires by electrochemical techniques. Appl Phys Lett 89:203117CrossRef Mora-Seró Iván, Fabregat-Santiago F, Denier B, Bisquert J (2006) Determination of carrier density of ZnO nanowires by electrochemical techniques. Appl Phys Lett 89:203117CrossRef
35.
go back to reference Liu H, Piret G, Sieber B, Laureyns J, Roussel P, Xu W, Boukherroub R, Szunerits S (2009) Electrochemical impedance spectroscopy of ZnO nanostructures. Electrochem Commun 11(5):945–949CrossRef Liu H, Piret G, Sieber B, Laureyns J, Roussel P, Xu W, Boukherroub R, Szunerits S (2009) Electrochemical impedance spectroscopy of ZnO nanostructures. Electrochem Commun 11(5):945–949CrossRef
Metadata
Title
Bath temperature and deposition potential dependences of CuSCN nanorod arrays prepared by electrochemical deposition
Publication date
01-12-2015
Published in
Journal of Materials Science / Issue 24/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9267-7

Other articles of this Issue 24/2015

Journal of Materials Science 24/2015 Go to the issue

Premium Partners