Skip to main content
Top
Published in: Journal of Materials Science 24/2015

01-12-2015 | Original Paper

Atomic scale modeling of shock response of fused silica and α-quartz

Authors: J. Wang, A. M. Rajendran, A. M. Dongare

Published in: Journal of Materials Science | Issue 24/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Large-scale molecular dynamics (MD) simulations are carried out using the Tersoff potential to understand the shock wave propagation behavior and the microstructural response of amorphous silica (a-SiO2) and α-quartz. The effect of shock pressure on the densification and phase transformation behavior is investigated using impact velocities of 0.5, 1.0, 1.5, and 2.0 km/s for a-SiO2 and using impact velocities of 2.0 and 3.0 km/s for α-quartz. MD simulations for a-SiO2 suggest that impact velocities of 1.5 km/s and higher result in average pressures that are greater than 9 GPa for the compressed material leading to permanent densification of the material behind the shock front. In addition, the high peak pressures render a phase transformation of the amorphous phase to the high-pressure stishovite phase, and the microstructure corresponds to a heterogeneous mixture of stishovite and liquid SiO2. Spall failure due to the interaction of the reflected tensile waves, however, is not observed for any of the velocities considered for amorphous silica as the peak tensile pressure generated is insufficient to nucleate cracks. This is verified through MD simulations of uniaxial expansion of fused silica to compute the spall strength at the strain rates generated during shock simulations (109 to 1010 s−1). The uniaxial expansion simulations suggest a brittle mode of failure for a-SiO2, as observed experimentally. In comparison, shock-induced densification and phase transformation behavior to the high-pressure stishovite phase are also observed for α-quartz for an impact velocity of 3.0 km/s. The threshold pressures for the densification and phase transformation behavior for amorphous silica and α-quartz compare very well with those observed experimentally.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Bridgman PW, Šimon I (1953) Effects of very high pressures on glass. J Appl Phys 24(4):405–413CrossRef Bridgman PW, Šimon I (1953) Effects of very high pressures on glass. J Appl Phys 24(4):405–413CrossRef
3.
go back to reference Wackerle J (1962) Shock-wave compression of quartz. J Appl Phys 33(3):922–937CrossRef Wackerle J (1962) Shock-wave compression of quartz. J Appl Phys 33(3):922–937CrossRef
4.
go back to reference Hemley R, Mao H, Bell P, Mysen B (1986) Raman spectroscopy of SiO2 glass at high pressure. Phys Rev Lett 57(6):747–750CrossRef Hemley R, Mao H, Bell P, Mysen B (1986) Raman spectroscopy of SiO2 glass at high pressure. Phys Rev Lett 57(6):747–750CrossRef
5.
go back to reference Sugiura H (1981) Dynamic response of fused quartz in the permanent densification region. J Appl Phys 52(5):3375–3382CrossRef Sugiura H (1981) Dynamic response of fused quartz in the permanent densification region. J Appl Phys 52(5):3375–3382CrossRef
6.
go back to reference Sugiura H, Ikeda R, Kondo K, Yamadaya T (1997) Densified silica glass after shock compression. J Appl Phys 81(4):1651–1655CrossRef Sugiura H, Ikeda R, Kondo K, Yamadaya T (1997) Densified silica glass after shock compression. J Appl Phys 81(4):1651–1655CrossRef
7.
go back to reference Zha C-S, Hemley R, Mao H-K, Duffy T, Meade C (1994) Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering. Phys Rev B 50(18):13105–13112CrossRef Zha C-S, Hemley R, Mao H-K, Duffy T, Meade C (1994) Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering. Phys Rev B 50(18):13105–13112CrossRef
8.
go back to reference Schmitt DR, Ahrens TJ (1989) Shock temperatures in silica glass: implications for modes of shock-induced deformation, phase transformation, and melting with pressure. J Geophys Res 94(B5):5851–5871CrossRef Schmitt DR, Ahrens TJ (1989) Shock temperatures in silica glass: implications for modes of shock-induced deformation, phase transformation, and melting with pressure. J Geophys Res 94(B5):5851–5871CrossRef
9.
go back to reference Grady DE, Murri WJ, Fowles GR (1974) Quartz to stishovite: wave propagation in the mixed phase region. J Geophys Res 79(2):332–338CrossRef Grady DE, Murri WJ, Fowles GR (1974) Quartz to stishovite: wave propagation in the mixed phase region. J Geophys Res 79(2):332–338CrossRef
10.
go back to reference Graham RA (1974) Shock-wave compression of x-cut quartz as determined by electrical response measurements. J Phys Chem Solids 35(3):355–372CrossRef Graham RA (1974) Shock-wave compression of x-cut quartz as determined by electrical response measurements. J Phys Chem Solids 35(3):355–372CrossRef
11.
go back to reference Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29(12):6443–6453CrossRef Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29(12):6443–6453CrossRef
12.
go back to reference Foiles SM (1985) Application of the embedded-atom method to liquid transition metals. Phys Rev B 32(6):3409–3415CrossRef Foiles SM (1985) Application of the embedded-atom method to liquid transition metals. Phys Rev B 32(6):3409–3415CrossRef
13.
go back to reference Johnson RA (1988) Analytic nearest-neighbor model for fcc metals. Phys Rev B 37(8):3924–3931CrossRef Johnson RA (1988) Analytic nearest-neighbor model for fcc metals. Phys Rev B 37(8):3924–3931CrossRef
14.
go back to reference Dongare AM, Rajendran AM, LaMattina B, Zikry MA, Brenner DW (2010) Atomic scale studies of spall behavior in nanocrystalline Cu. J Appl Phys 108(11):113518CrossRef Dongare AM, Rajendran AM, LaMattina B, Zikry MA, Brenner DW (2010) Atomic scale studies of spall behavior in nanocrystalline Cu. J Appl Phys 108(11):113518CrossRef
15.
go back to reference Dongare AM, Rajendran AM, Lamattina B, Brenner DW, Zikry MA (2009) Atomic-Scale study of plastic-yield criterion in nanocrystalline Cu at high strain rates. Metall Mater Trans A 41(2):523–531CrossRef Dongare AM, Rajendran AM, Lamattina B, Brenner DW, Zikry MA (2009) Atomic-Scale study of plastic-yield criterion in nanocrystalline Cu at high strain rates. Metall Mater Trans A 41(2):523–531CrossRef
16.
go back to reference Dongare A, Rajendran A, LaMattina B, Zikry M, Brenner D (2009) Atomic scale simulations of ductile failure micromechanisms in nanocrystalline Cu at high strain rates. Phys Rev B 80(10):104103CrossRef Dongare A, Rajendran A, LaMattina B, Zikry M, Brenner D (2009) Atomic scale simulations of ductile failure micromechanisms in nanocrystalline Cu at high strain rates. Phys Rev B 80(10):104103CrossRef
17.
go back to reference Dongare AM, Rajendran AM, LaMattina B, Zikry MA, Brenner DW. Atomistic studies of void-growth based yield criteria in single crystal Cu at high strain rates. In: AIP conference proceedings, vol. 1195, pp 769–772 Dongare AM, Rajendran AM, LaMattina B, Zikry MA, Brenner DW. Atomistic studies of void-growth based yield criteria in single crystal Cu at high strain rates. In: AIP conference proceedings, vol. 1195, pp 769–772
18.
go back to reference Dongare AM, LaMattina B, Rajendran AM (2011) Atomic scale studies of spall behavior in single crystal Cu. Procedia Eng 10:3636–3641CrossRef Dongare AM, LaMattina B, Rajendran AM (2011) Atomic scale studies of spall behavior in single crystal Cu. Procedia Eng 10:3636–3641CrossRef
19.
go back to reference Valisetty RR, Dongare AM, Rajendran AM, Namburu RR (2013) Effect of the strain rate and microstructure on damage growth in aluminum. Comput Mater Contin 36(3):231–255 Valisetty RR, Dongare AM, Rajendran AM, Namburu RR (2013) Effect of the strain rate and microstructure on damage growth in aluminum. Comput Mater Contin 36(3):231–255
20.
go back to reference Tsuneyuki S, Tsukada M, Aoki H, Matsui Y (1988) First-principles interatomic potential of silica applied to molecular dynamics. Phys Rev Lett 61(7):869–872CrossRef Tsuneyuki S, Tsukada M, Aoki H, Matsui Y (1988) First-principles interatomic potential of silica applied to molecular dynamics. Phys Rev Lett 61(7):869–872CrossRef
21.
go back to reference van Beest BWH, Kramer GJ (1990) Force fields for silicas and aluminophosphates based on ab initio calculations. Phys Rev Lett 64(16):1955–1958CrossRef van Beest BWH, Kramer GJ (1990) Force fields for silicas and aluminophosphates based on ab initio calculations. Phys Rev Lett 64(16):1955–1958CrossRef
22.
go back to reference Barmes F, Soulard L, Mareschal M (2006) Molecular dynamics of shock-wave induced structural changes in silica glasses. Phys Rev B 73(22):224108CrossRef Barmes F, Soulard L, Mareschal M (2006) Molecular dynamics of shock-wave induced structural changes in silica glasses. Phys Rev B 73(22):224108CrossRef
23.
go back to reference Farrow MR, Probert MI (2011) Atomistic molecular dynamics simulations of shock compressed quartz. J Chem Phys 135(4):044508CrossRef Farrow MR, Probert MI (2011) Atomistic molecular dynamics simulations of shock compressed quartz. J Chem Phys 135(4):044508CrossRef
24.
go back to reference Munetoh S, Motooka T, Moriguchi K, Shintani A (2007) Interatomic potential for Si–O systems using Tersoff parameterization. Comput Mater Sci 39(2):334–339CrossRef Munetoh S, Motooka T, Moriguchi K, Shintani A (2007) Interatomic potential for Si–O systems using Tersoff parameterization. Comput Mater Sci 39(2):334–339CrossRef
25.
go back to reference Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37(12):6991–7000CrossRef Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37(12):6991–7000CrossRef
26.
go back to reference Su R, Xiang M, Chen J, Jiang S, Wei H (2014) Molecular dynamics simulation of shock induced ejection on fused silica surface. J Appl Phys 115(19):193508CrossRef Su R, Xiang M, Chen J, Jiang S, Wei H (2014) Molecular dynamics simulation of shock induced ejection on fused silica surface. J Appl Phys 115(19):193508CrossRef
27.
go back to reference Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRef Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRef
28.
go back to reference Beeman D (1976) Some multistep methods for use in molecular dynamics calculations. J Comput Phys 20(2):130–139CrossRef Beeman D (1976) Some multistep methods for use in molecular dynamics calculations. J Comput Phys 20(2):130–139CrossRef
29.
go back to reference Brutzel LV, Rountree CL, Kalia RK, Nakano A, Vashishta P (2001) Dynamic fracture mechanisms in nanostructured and amorphous silica glasses million-atom molecular dynamics simulations. In: MRS online proceedings library, 703 null-null Brutzel LV, Rountree CL, Kalia RK, Nakano A, Vashishta P (2001) Dynamic fracture mechanisms in nanostructured and amorphous silica glasses million-atom molecular dynamics simulations. In: MRS online proceedings library, 703 null-null
30.
go back to reference Muralidharan K, Simmons JH, Deymier PA, Runge K (2005) Molecular dynamics studies of brittle fracture in vitreous silica: review and recent progress. J Non Cryst Solids 351(18):1532–1542CrossRef Muralidharan K, Simmons JH, Deymier PA, Runge K (2005) Molecular dynamics studies of brittle fracture in vitreous silica: review and recent progress. J Non Cryst Solids 351(18):1532–1542CrossRef
31.
go back to reference Mantisi B, Tanguy A, Kermouche G, Barthel E (2012) Atomistic response of a model silica glass under shear and pressure. Eur Phys J B 85(9):1–13CrossRef Mantisi B, Tanguy A, Kermouche G, Barthel E (2012) Atomistic response of a model silica glass under shear and pressure. Eur Phys J B 85(9):1–13CrossRef
32.
go back to reference Yuan F, Huang L (2012) Molecular dynamics simulation of amorphous silica under uniaxial tension: from bulk to nanowire. J Non Cryst Solids 358(24):3481–3487CrossRef Yuan F, Huang L (2012) Molecular dynamics simulation of amorphous silica under uniaxial tension: from bulk to nanowire. J Non Cryst Solids 358(24):3481–3487CrossRef
33.
go back to reference Muralidharan K, Oh K-D, Deymier PA, Runge K, Simmons JH (2007) Molecular dynamics simulations of atomic-level brittle fracture mechanisms in amorphous silica. J Mater Sci 42(12):4159–4169. doi:10.1007/s10853-007-1638-2 CrossRef Muralidharan K, Oh K-D, Deymier PA, Runge K, Simmons JH (2007) Molecular dynamics simulations of atomic-level brittle fracture mechanisms in amorphous silica. J Mater Sci 42(12):4159–4169. doi:10.​1007/​s10853-007-1638-2 CrossRef
34.
go back to reference Pedone A, Malavasi G, Menziani MC, Segre U, Cormack AN (2008) Molecular dynamics studies of stress–strain behavior of silica glass under a tensile load. Chem Mater 20(13):4356–4366CrossRef Pedone A, Malavasi G, Menziani MC, Segre U, Cormack AN (2008) Molecular dynamics studies of stress–strain behavior of silica glass under a tensile load. Chem Mater 20(13):4356–4366CrossRef
35.
go back to reference Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169CrossRef Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169CrossRef
36.
go back to reference Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef
Metadata
Title
Atomic scale modeling of shock response of fused silica and α-quartz
Authors
J. Wang
A. M. Rajendran
A. M. Dongare
Publication date
01-12-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 24/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9386-1

Other articles of this Issue 24/2015

Journal of Materials Science 24/2015 Go to the issue

Premium Partners