Skip to main content
Erschienen in: Journal of Materials Science 24/2015

01.12.2015 | Original Paper

Atomic scale modeling of shock response of fused silica and α-quartz

verfasst von: J. Wang, A. M. Rajendran, A. M. Dongare

Erschienen in: Journal of Materials Science | Ausgabe 24/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Large-scale molecular dynamics (MD) simulations are carried out using the Tersoff potential to understand the shock wave propagation behavior and the microstructural response of amorphous silica (a-SiO2) and α-quartz. The effect of shock pressure on the densification and phase transformation behavior is investigated using impact velocities of 0.5, 1.0, 1.5, and 2.0 km/s for a-SiO2 and using impact velocities of 2.0 and 3.0 km/s for α-quartz. MD simulations for a-SiO2 suggest that impact velocities of 1.5 km/s and higher result in average pressures that are greater than 9 GPa for the compressed material leading to permanent densification of the material behind the shock front. In addition, the high peak pressures render a phase transformation of the amorphous phase to the high-pressure stishovite phase, and the microstructure corresponds to a heterogeneous mixture of stishovite and liquid SiO2. Spall failure due to the interaction of the reflected tensile waves, however, is not observed for any of the velocities considered for amorphous silica as the peak tensile pressure generated is insufficient to nucleate cracks. This is verified through MD simulations of uniaxial expansion of fused silica to compute the spall strength at the strain rates generated during shock simulations (109 to 1010 s−1). The uniaxial expansion simulations suggest a brittle mode of failure for a-SiO2, as observed experimentally. In comparison, shock-induced densification and phase transformation behavior to the high-pressure stishovite phase are also observed for α-quartz for an impact velocity of 3.0 km/s. The threshold pressures for the densification and phase transformation behavior for amorphous silica and α-quartz compare very well with those observed experimentally.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Bridgman PW, Šimon I (1953) Effects of very high pressures on glass. J Appl Phys 24(4):405–413CrossRef Bridgman PW, Šimon I (1953) Effects of very high pressures on glass. J Appl Phys 24(4):405–413CrossRef
3.
Zurück zum Zitat Wackerle J (1962) Shock-wave compression of quartz. J Appl Phys 33(3):922–937CrossRef Wackerle J (1962) Shock-wave compression of quartz. J Appl Phys 33(3):922–937CrossRef
4.
Zurück zum Zitat Hemley R, Mao H, Bell P, Mysen B (1986) Raman spectroscopy of SiO2 glass at high pressure. Phys Rev Lett 57(6):747–750CrossRef Hemley R, Mao H, Bell P, Mysen B (1986) Raman spectroscopy of SiO2 glass at high pressure. Phys Rev Lett 57(6):747–750CrossRef
5.
Zurück zum Zitat Sugiura H (1981) Dynamic response of fused quartz in the permanent densification region. J Appl Phys 52(5):3375–3382CrossRef Sugiura H (1981) Dynamic response of fused quartz in the permanent densification region. J Appl Phys 52(5):3375–3382CrossRef
6.
Zurück zum Zitat Sugiura H, Ikeda R, Kondo K, Yamadaya T (1997) Densified silica glass after shock compression. J Appl Phys 81(4):1651–1655CrossRef Sugiura H, Ikeda R, Kondo K, Yamadaya T (1997) Densified silica glass after shock compression. J Appl Phys 81(4):1651–1655CrossRef
7.
Zurück zum Zitat Zha C-S, Hemley R, Mao H-K, Duffy T, Meade C (1994) Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering. Phys Rev B 50(18):13105–13112CrossRef Zha C-S, Hemley R, Mao H-K, Duffy T, Meade C (1994) Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering. Phys Rev B 50(18):13105–13112CrossRef
8.
Zurück zum Zitat Schmitt DR, Ahrens TJ (1989) Shock temperatures in silica glass: implications for modes of shock-induced deformation, phase transformation, and melting with pressure. J Geophys Res 94(B5):5851–5871CrossRef Schmitt DR, Ahrens TJ (1989) Shock temperatures in silica glass: implications for modes of shock-induced deformation, phase transformation, and melting with pressure. J Geophys Res 94(B5):5851–5871CrossRef
9.
Zurück zum Zitat Grady DE, Murri WJ, Fowles GR (1974) Quartz to stishovite: wave propagation in the mixed phase region. J Geophys Res 79(2):332–338CrossRef Grady DE, Murri WJ, Fowles GR (1974) Quartz to stishovite: wave propagation in the mixed phase region. J Geophys Res 79(2):332–338CrossRef
10.
Zurück zum Zitat Graham RA (1974) Shock-wave compression of x-cut quartz as determined by electrical response measurements. J Phys Chem Solids 35(3):355–372CrossRef Graham RA (1974) Shock-wave compression of x-cut quartz as determined by electrical response measurements. J Phys Chem Solids 35(3):355–372CrossRef
11.
Zurück zum Zitat Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29(12):6443–6453CrossRef Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29(12):6443–6453CrossRef
12.
Zurück zum Zitat Foiles SM (1985) Application of the embedded-atom method to liquid transition metals. Phys Rev B 32(6):3409–3415CrossRef Foiles SM (1985) Application of the embedded-atom method to liquid transition metals. Phys Rev B 32(6):3409–3415CrossRef
13.
Zurück zum Zitat Johnson RA (1988) Analytic nearest-neighbor model for fcc metals. Phys Rev B 37(8):3924–3931CrossRef Johnson RA (1988) Analytic nearest-neighbor model for fcc metals. Phys Rev B 37(8):3924–3931CrossRef
14.
Zurück zum Zitat Dongare AM, Rajendran AM, LaMattina B, Zikry MA, Brenner DW (2010) Atomic scale studies of spall behavior in nanocrystalline Cu. J Appl Phys 108(11):113518CrossRef Dongare AM, Rajendran AM, LaMattina B, Zikry MA, Brenner DW (2010) Atomic scale studies of spall behavior in nanocrystalline Cu. J Appl Phys 108(11):113518CrossRef
15.
Zurück zum Zitat Dongare AM, Rajendran AM, Lamattina B, Brenner DW, Zikry MA (2009) Atomic-Scale study of plastic-yield criterion in nanocrystalline Cu at high strain rates. Metall Mater Trans A 41(2):523–531CrossRef Dongare AM, Rajendran AM, Lamattina B, Brenner DW, Zikry MA (2009) Atomic-Scale study of plastic-yield criterion in nanocrystalline Cu at high strain rates. Metall Mater Trans A 41(2):523–531CrossRef
16.
Zurück zum Zitat Dongare A, Rajendran A, LaMattina B, Zikry M, Brenner D (2009) Atomic scale simulations of ductile failure micromechanisms in nanocrystalline Cu at high strain rates. Phys Rev B 80(10):104103CrossRef Dongare A, Rajendran A, LaMattina B, Zikry M, Brenner D (2009) Atomic scale simulations of ductile failure micromechanisms in nanocrystalline Cu at high strain rates. Phys Rev B 80(10):104103CrossRef
17.
Zurück zum Zitat Dongare AM, Rajendran AM, LaMattina B, Zikry MA, Brenner DW. Atomistic studies of void-growth based yield criteria in single crystal Cu at high strain rates. In: AIP conference proceedings, vol. 1195, pp 769–772 Dongare AM, Rajendran AM, LaMattina B, Zikry MA, Brenner DW. Atomistic studies of void-growth based yield criteria in single crystal Cu at high strain rates. In: AIP conference proceedings, vol. 1195, pp 769–772
18.
Zurück zum Zitat Dongare AM, LaMattina B, Rajendran AM (2011) Atomic scale studies of spall behavior in single crystal Cu. Procedia Eng 10:3636–3641CrossRef Dongare AM, LaMattina B, Rajendran AM (2011) Atomic scale studies of spall behavior in single crystal Cu. Procedia Eng 10:3636–3641CrossRef
19.
Zurück zum Zitat Valisetty RR, Dongare AM, Rajendran AM, Namburu RR (2013) Effect of the strain rate and microstructure on damage growth in aluminum. Comput Mater Contin 36(3):231–255 Valisetty RR, Dongare AM, Rajendran AM, Namburu RR (2013) Effect of the strain rate and microstructure on damage growth in aluminum. Comput Mater Contin 36(3):231–255
20.
Zurück zum Zitat Tsuneyuki S, Tsukada M, Aoki H, Matsui Y (1988) First-principles interatomic potential of silica applied to molecular dynamics. Phys Rev Lett 61(7):869–872CrossRef Tsuneyuki S, Tsukada M, Aoki H, Matsui Y (1988) First-principles interatomic potential of silica applied to molecular dynamics. Phys Rev Lett 61(7):869–872CrossRef
21.
Zurück zum Zitat van Beest BWH, Kramer GJ (1990) Force fields for silicas and aluminophosphates based on ab initio calculations. Phys Rev Lett 64(16):1955–1958CrossRef van Beest BWH, Kramer GJ (1990) Force fields for silicas and aluminophosphates based on ab initio calculations. Phys Rev Lett 64(16):1955–1958CrossRef
22.
Zurück zum Zitat Barmes F, Soulard L, Mareschal M (2006) Molecular dynamics of shock-wave induced structural changes in silica glasses. Phys Rev B 73(22):224108CrossRef Barmes F, Soulard L, Mareschal M (2006) Molecular dynamics of shock-wave induced structural changes in silica glasses. Phys Rev B 73(22):224108CrossRef
23.
Zurück zum Zitat Farrow MR, Probert MI (2011) Atomistic molecular dynamics simulations of shock compressed quartz. J Chem Phys 135(4):044508CrossRef Farrow MR, Probert MI (2011) Atomistic molecular dynamics simulations of shock compressed quartz. J Chem Phys 135(4):044508CrossRef
24.
Zurück zum Zitat Munetoh S, Motooka T, Moriguchi K, Shintani A (2007) Interatomic potential for Si–O systems using Tersoff parameterization. Comput Mater Sci 39(2):334–339CrossRef Munetoh S, Motooka T, Moriguchi K, Shintani A (2007) Interatomic potential for Si–O systems using Tersoff parameterization. Comput Mater Sci 39(2):334–339CrossRef
25.
Zurück zum Zitat Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37(12):6991–7000CrossRef Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37(12):6991–7000CrossRef
26.
Zurück zum Zitat Su R, Xiang M, Chen J, Jiang S, Wei H (2014) Molecular dynamics simulation of shock induced ejection on fused silica surface. J Appl Phys 115(19):193508CrossRef Su R, Xiang M, Chen J, Jiang S, Wei H (2014) Molecular dynamics simulation of shock induced ejection on fused silica surface. J Appl Phys 115(19):193508CrossRef
27.
Zurück zum Zitat Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRef Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRef
28.
Zurück zum Zitat Beeman D (1976) Some multistep methods for use in molecular dynamics calculations. J Comput Phys 20(2):130–139CrossRef Beeman D (1976) Some multistep methods for use in molecular dynamics calculations. J Comput Phys 20(2):130–139CrossRef
29.
Zurück zum Zitat Brutzel LV, Rountree CL, Kalia RK, Nakano A, Vashishta P (2001) Dynamic fracture mechanisms in nanostructured and amorphous silica glasses million-atom molecular dynamics simulations. In: MRS online proceedings library, 703 null-null Brutzel LV, Rountree CL, Kalia RK, Nakano A, Vashishta P (2001) Dynamic fracture mechanisms in nanostructured and amorphous silica glasses million-atom molecular dynamics simulations. In: MRS online proceedings library, 703 null-null
30.
Zurück zum Zitat Muralidharan K, Simmons JH, Deymier PA, Runge K (2005) Molecular dynamics studies of brittle fracture in vitreous silica: review and recent progress. J Non Cryst Solids 351(18):1532–1542CrossRef Muralidharan K, Simmons JH, Deymier PA, Runge K (2005) Molecular dynamics studies of brittle fracture in vitreous silica: review and recent progress. J Non Cryst Solids 351(18):1532–1542CrossRef
31.
Zurück zum Zitat Mantisi B, Tanguy A, Kermouche G, Barthel E (2012) Atomistic response of a model silica glass under shear and pressure. Eur Phys J B 85(9):1–13CrossRef Mantisi B, Tanguy A, Kermouche G, Barthel E (2012) Atomistic response of a model silica glass under shear and pressure. Eur Phys J B 85(9):1–13CrossRef
32.
Zurück zum Zitat Yuan F, Huang L (2012) Molecular dynamics simulation of amorphous silica under uniaxial tension: from bulk to nanowire. J Non Cryst Solids 358(24):3481–3487CrossRef Yuan F, Huang L (2012) Molecular dynamics simulation of amorphous silica under uniaxial tension: from bulk to nanowire. J Non Cryst Solids 358(24):3481–3487CrossRef
33.
Zurück zum Zitat Muralidharan K, Oh K-D, Deymier PA, Runge K, Simmons JH (2007) Molecular dynamics simulations of atomic-level brittle fracture mechanisms in amorphous silica. J Mater Sci 42(12):4159–4169. doi:10.1007/s10853-007-1638-2 CrossRef Muralidharan K, Oh K-D, Deymier PA, Runge K, Simmons JH (2007) Molecular dynamics simulations of atomic-level brittle fracture mechanisms in amorphous silica. J Mater Sci 42(12):4159–4169. doi:10.​1007/​s10853-007-1638-2 CrossRef
34.
Zurück zum Zitat Pedone A, Malavasi G, Menziani MC, Segre U, Cormack AN (2008) Molecular dynamics studies of stress–strain behavior of silica glass under a tensile load. Chem Mater 20(13):4356–4366CrossRef Pedone A, Malavasi G, Menziani MC, Segre U, Cormack AN (2008) Molecular dynamics studies of stress–strain behavior of silica glass under a tensile load. Chem Mater 20(13):4356–4366CrossRef
35.
Zurück zum Zitat Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169CrossRef Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169CrossRef
36.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef
Metadaten
Titel
Atomic scale modeling of shock response of fused silica and α-quartz
verfasst von
J. Wang
A. M. Rajendran
A. M. Dongare
Publikationsdatum
01.12.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 24/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9386-1

Weitere Artikel der Ausgabe 24/2015

Journal of Materials Science 24/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.