Skip to main content
Top
Published in: Journal of Materials Science 24/2015

01-12-2015 | Original Paper

Release and antimicrobial activity of levofloxacin from composite mats of poly(ɛ-caprolactone) and mesoporous silica nanoparticles fabricated by core–shell electrospinning

Authors: Javid Jalvandi, Max White, Yen Bach Truong, Yuan Gao, Rajiv Padhye, Ilias Louis Kyratzis

Published in: Journal of Materials Science | Issue 24/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanofibrous materials have often been reported as carriers for clinical drugs but face the limitation of releasing the drugs in a burst fashion during use. The aim of this study is to produce composite nanofibrous mats with sustained release, using the broad spectrum antibiotic levofloxacin (LVF) as a model. Sustained release was achieved through two approaches, i.e. by firstly loading LVF into mesoporous silica nanoparticles (MSN) and then incorporating the MSN in the core regions of poly(ɛ-caprolactone) (PCL) nanofibres via core–shell electrospinning. Uniform PCL/LVF nanofibrous mats were also produced as controls. Loading of LVF into the MSN nanopores was confirmed by FTIR, BJH and BET measurements (100 mg LVF/g MSN). After electrospinning, electron microscopy revealed that the MSN were indeed confined in the core regions of the nanofibres. Drug release profiles showed that burst release was decreased from 59 % in the uniform PCL/LVF electrospun mats to 39 % in the core–shell PCL/LVF–MSN mats after 1 day in phosphate buffer at 37 °C, and gradual release in the latter was observed over the next 13 days. Antimicrobial assays showed that the composite electrospun mats were highly effective in killing Escherichia coli even after the mats had been incubated in a phosphate buffer for 14 days while the uniform PCL/LVF mats lost the ability after only 7 days. The results indicate that adsorption of the drug onto MSN and confining them in the core of nanofibres are effective ways of minimizing burst release and achieving sustained release of the drug.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Langer R (1998) Drug delivery and targeting. Nature 392(6679 Suppl):5–10 Langer R (1998) Drug delivery and targeting. Nature 392(6679 Suppl):5–10
2.
go back to reference De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133CrossRef De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133CrossRef
3.
go back to reference Jain K (2008) Drug delivery systems—an overview. In: Jain K (ed) Drug delivery systems. Humana Press, Totowa, pp 1–50CrossRef Jain K (2008) Drug delivery systems—an overview. In: Jain K (ed) Drug delivery systems. Humana Press, Totowa, pp 1–50CrossRef
4.
go back to reference Lavan DA, McGuire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nat Biotechnol 21(10):1184–1191CrossRef Lavan DA, McGuire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nat Biotechnol 21(10):1184–1191CrossRef
5.
go back to reference Ranade VV, Cannon JB (2011) Drug delivery systems. CRC Press, Boca Raton Ranade VV, Cannon JB (2011) Drug delivery systems. CRC Press, Boca Raton
6.
go back to reference Ramakrishna S et al (2005) An introduction to electrospinning and nanofibers, vol 90. World Scientific, SingaporeCrossRef Ramakrishna S et al (2005) An introduction to electrospinning and nanofibers, vol 90. World Scientific, SingaporeCrossRef
7.
go back to reference Wang X et al (2002) Electrospinning technology: a novel approach to sensor application. J Macromol Sci Part A 39(10):1251–1258CrossRef Wang X et al (2002) Electrospinning technology: a novel approach to sensor application. J Macromol Sci Part A 39(10):1251–1258CrossRef
8.
go back to reference Huang Z-M et al (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253CrossRef Huang Z-M et al (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253CrossRef
9.
go back to reference Kenawy E-R et al (2009) Processing of polymer nanofibers through electrospinning as drug delivery systems. Mater Chem Phys 113(1):296–302CrossRef Kenawy E-R et al (2009) Processing of polymer nanofibers through electrospinning as drug delivery systems. Mater Chem Phys 113(1):296–302CrossRef
10.
go back to reference Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006CrossRef Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006CrossRef
11.
go back to reference Zeng J et al (2003) Biodegradable electrospun fibers for drug delivery. J Control Release 92(3):227–231CrossRef Zeng J et al (2003) Biodegradable electrospun fibers for drug delivery. J Control Release 92(3):227–231CrossRef
12.
go back to reference Kenawy E-R et al (2007) Controlled release of ketoprofen from electrospun poly (vinyl alcohol) nanofibers. Mater Sci Eng A 459(1):390–396CrossRef Kenawy E-R et al (2007) Controlled release of ketoprofen from electrospun poly (vinyl alcohol) nanofibers. Mater Sci Eng A 459(1):390–396CrossRef
13.
go back to reference He CL et al (2006) Coaxial electrospun poly (L-lactic acid) ultrafine fibers for sustained drug delivery. J Macromol Sci Part B 45(4):515–524CrossRef He CL et al (2006) Coaxial electrospun poly (L-lactic acid) ultrafine fibers for sustained drug delivery. J Macromol Sci Part B 45(4):515–524CrossRef
14.
go back to reference Zong X et al (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16):4403–4412CrossRef Zong X et al (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16):4403–4412CrossRef
15.
go back to reference Xiaoqiang L et al (2009) Fabrication and properties of core-shell structure P (LLA-CL) nanofibers by coaxial electrospinning. J Appl Polym Sci 111(3):1564–1570CrossRef Xiaoqiang L et al (2009) Fabrication and properties of core-shell structure P (LLA-CL) nanofibers by coaxial electrospinning. J Appl Polym Sci 111(3):1564–1570CrossRef
16.
go back to reference Huang ZM et al (2006) Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J Biomed Mater Res Part A 77(1):169–179CrossRef Huang ZM et al (2006) Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J Biomed Mater Res Part A 77(1):169–179CrossRef
17.
go back to reference Song W et al (2013) Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device. Biofabrication 5(3):035006CrossRef Song W et al (2013) Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device. Biofabrication 5(3):035006CrossRef
18.
go back to reference Yu D et al (2013) Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers. Acta Biomater 9(3):5665–5672CrossRef Yu D et al (2013) Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers. Acta Biomater 9(3):5665–5672CrossRef
19.
go back to reference Qian W et al (2014) Dual drug release electrospun core-shell nanofibers with tunable dose in the second phase. Int J Mol Sci 15(1):774–786CrossRef Qian W et al (2014) Dual drug release electrospun core-shell nanofibers with tunable dose in the second phase. Int J Mol Sci 15(1):774–786CrossRef
20.
go back to reference Su Y et al (2011) Encapsulation and controlled release of heparin from electrospun poly (l-lactide-co-ε-caprolactone) nanofibers. J Biomater Sci Polym Ed 22(1–3):165–177CrossRef Su Y et al (2011) Encapsulation and controlled release of heparin from electrospun poly (l-lactide-co-ε-caprolactone) nanofibers. J Biomater Sci Polym Ed 22(1–3):165–177CrossRef
21.
go back to reference Wang C et al (2010) Biodegradable core/shell fibers by coaxial electrospinning: processing, fiber characterization, and its application in sustained drug release. Macromolecules 43(15):6389–6397CrossRef Wang C et al (2010) Biodegradable core/shell fibers by coaxial electrospinning: processing, fiber characterization, and its application in sustained drug release. Macromolecules 43(15):6389–6397CrossRef
22.
go back to reference Meng ZX et al (2011) Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. Mater Chem Phys 125(3):606–611CrossRef Meng ZX et al (2011) Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. Mater Chem Phys 125(3):606–611CrossRef
23.
go back to reference Li L et al (2011) Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release. Int J Biol Macromol 49(2):223–232CrossRef Li L et al (2011) Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release. Int J Biol Macromol 49(2):223–232CrossRef
24.
go back to reference Tarn D et al (2013) Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res 46(3):792–801CrossRef Tarn D et al (2013) Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res 46(3):792–801CrossRef
25.
go back to reference Liu X (2013) Fabrication of heparinized mesoporous silica nanoparticles as multifunctional drug carriers. J Chem 2013:430459 Liu X (2013) Fabrication of heparinized mesoporous silica nanoparticles as multifunctional drug carriers. J Chem 2013:430459
26.
go back to reference Grumezescu AM et al (2013) Biocompatible magnetic hollow silica microspheres for drug delivery. Curr Org Chem 17(10):1029–1033CrossRef Grumezescu AM et al (2013) Biocompatible magnetic hollow silica microspheres for drug delivery. Curr Org Chem 17(10):1029–1033CrossRef
27.
go back to reference Song B, Wu C, Chang J (2012) Dual drug release from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles. Acta Biomater 8(5):1901–1907CrossRef Song B, Wu C, Chang J (2012) Dual drug release from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles. Acta Biomater 8(5):1901–1907CrossRef
28.
go back to reference Tsai C-H et al (2011) Surfactant-assisted controlled release of hydrophobic drugs using anionic surfactant templated mesoporous silica nanoparticles. Biomaterials 32(26):6234–6244 Tsai C-H et al (2011) Surfactant-assisted controlled release of hydrophobic drugs using anionic surfactant templated mesoporous silica nanoparticles. Biomaterials 32(26):6234–6244
29.
go back to reference He Q, Shi J (2011) Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J Mater Chem 21(16):5845–5855CrossRef He Q, Shi J (2011) Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J Mater Chem 21(16):5845–5855CrossRef
30.
go back to reference He Q et al (2009) Intracellular localization and cytotoxicity of spherical mesoporous silica nano- and microparticles. Small 5(23):2722–2729CrossRef He Q et al (2009) Intracellular localization and cytotoxicity of spherical mesoporous silica nano- and microparticles. Small 5(23):2722–2729CrossRef
31.
go back to reference Yang P, Gai S, Lin J (2012) Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 41(9):3679–3698CrossRef Yang P, Gai S, Lin J (2012) Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 41(9):3679–3698CrossRef
32.
go back to reference Kortesuo P et al (2000) Silica xerogel as an implantable carrier for controlled drug delivery—evaluation of drug distribution and tissue effects after implantation. Biomaterials 21(2):193–198CrossRef Kortesuo P et al (2000) Silica xerogel as an implantable carrier for controlled drug delivery—evaluation of drug distribution and tissue effects after implantation. Biomaterials 21(2):193–198CrossRef
33.
go back to reference Slowing II et al (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288CrossRef Slowing II et al (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288CrossRef
34.
go back to reference Douroumis D (2011) Encapsulation of water insoluble drugs in mesoporous silica nanoparticles using supercritical carbon dioxide. J Nanomed Nanotechnol 2:111 Douroumis D (2011) Encapsulation of water insoluble drugs in mesoporous silica nanoparticles using supercritical carbon dioxide. J Nanomed Nanotechnol 2:111
35.
go back to reference Levine MM (1984) Escherichia coli infections. In: Germanier R (ed) Bacterial vaccines. Academic Press, Inc., New York, pp 187–235CrossRef Levine MM (1984) Escherichia coli infections. In: Germanier R (ed) Bacterial vaccines. Academic Press, Inc., New York, pp 187–235CrossRef
36.
go back to reference Allen T (1997) Particle size measurement: volume 2: surface area and pore size determination, vol 2. Springer, New York Allen T (1997) Particle size measurement: volume 2: surface area and pore size determination, vol 2. Springer, New York
37.
go back to reference Zhang Y et al (2010) Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. J Control Release 145(3):257–263CrossRef Zhang Y et al (2010) Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. J Control Release 145(3):257–263CrossRef
38.
go back to reference Shi Y-T et al (2010) The size-controllable synthesis of nanometer-sized mesoporous silica in extremely dilute surfactant solution. Mater Chem Phys 120(1):193–198CrossRef Shi Y-T et al (2010) The size-controllable synthesis of nanometer-sized mesoporous silica in extremely dilute surfactant solution. Mater Chem Phys 120(1):193–198CrossRef
39.
go back to reference Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346CrossRef Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346CrossRef
40.
go back to reference Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8):762–798CrossRef Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8):762–798CrossRef
41.
go back to reference Li Z-Z et al (2004) Fabrication of porous hollow silica nanoparticles and their applications in drug release control. J Control Release 98(2):245–254CrossRef Li Z-Z et al (2004) Fabrication of porous hollow silica nanoparticles and their applications in drug release control. J Control Release 98(2):245–254CrossRef
42.
go back to reference Kanehata M, Ding B, Shiratori S (2007) Nanoporous ultra-high specific surface inorganic fibres. Nanotechnology 18(31):315602CrossRef Kanehata M, Ding B, Shiratori S (2007) Nanoporous ultra-high specific surface inorganic fibres. Nanotechnology 18(31):315602CrossRef
43.
go back to reference Park H et al (2012) Fabrication of levofloxacin-loaded nanofibrous scaffolds using coaxial electrospinning. J Pharm Investig 42:1–5CrossRef Park H et al (2012) Fabrication of levofloxacin-loaded nanofibrous scaffolds using coaxial electrospinning. J Pharm Investig 42:1–5CrossRef
44.
go back to reference Kim TG, Lee DS, Park TG (2007) Controlled protein release from electrospun biodegradable fiber mesh composed of poly (ɛ-caprolactone) and poly (ethylene oxide). Int J Pharm 338(1):276–283CrossRef Kim TG, Lee DS, Park TG (2007) Controlled protein release from electrospun biodegradable fiber mesh composed of poly (ɛ-caprolactone) and poly (ethylene oxide). Int J Pharm 338(1):276–283CrossRef
45.
go back to reference Pawlak A, Mucha M (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta 396(1):153–166CrossRef Pawlak A, Mucha M (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta 396(1):153–166CrossRef
46.
go back to reference Torres-Giner S et al (2012) Controlled delivery of gentamicin antibiotic from bioactive electrospun polylactide-based ultrathin fibers. Adv Eng Mater 14(4):B112–B122CrossRef Torres-Giner S et al (2012) Controlled delivery of gentamicin antibiotic from bioactive electrospun polylactide-based ultrathin fibers. Adv Eng Mater 14(4):B112–B122CrossRef
47.
go back to reference Nguyen TTT, Chung OH, Park JS (2011) Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity. Carbohydr Polym 86(4):1799–1806CrossRef Nguyen TTT, Chung OH, Park JS (2011) Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity. Carbohydr Polym 86(4):1799–1806CrossRef
48.
go back to reference Lu F et al (2011) Effects of amphiphilic PCL–PEG–PCL copolymer addition on 5-fluorouracil release from biodegradable PCL films for stent application. Int J Pharm 419(1):77–84CrossRef Lu F et al (2011) Effects of amphiphilic PCL–PEG–PCL copolymer addition on 5-fluorouracil release from biodegradable PCL films for stent application. Int J Pharm 419(1):77–84CrossRef
49.
go back to reference McDonald PF et al (2010) In vitro degradation and drug release from polymer blends based on poly (dl-lactide), poly (l-lactide-glycolide) and poly (ε-caprolactone). J Mater Sci 45(5):1284–1292. doi:10.1007/s10853-009-4080-9 CrossRef McDonald PF et al (2010) In vitro degradation and drug release from polymer blends based on poly (dl-lactide), poly (l-lactide-glycolide) and poly (ε-caprolactone). J Mater Sci 45(5):1284–1292. doi:10.​1007/​s10853-009-4080-9 CrossRef
Metadata
Title
Release and antimicrobial activity of levofloxacin from composite mats of poly(ɛ-caprolactone) and mesoporous silica nanoparticles fabricated by core–shell electrospinning
Authors
Javid Jalvandi
Max White
Yen Bach Truong
Yuan Gao
Rajiv Padhye
Ilias Louis Kyratzis
Publication date
01-12-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 24/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9361-x

Other articles of this Issue 24/2015

Journal of Materials Science 24/2015 Go to the issue

Premium Partners