Skip to main content
Top
Published in: Journal of Materials Science 24/2015

01-12-2015 | Review

Nano-carbon-based hybrids and heterostructures: progress in growth and application for lithium-ion batteries

Authors: Yuan Li, Junchi Wu, Nitin Chopra

Published in: Journal of Materials Science | Issue 24/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbon nanomaterials such as graphene, carbon nanotubes, and fullerene have drawn great interest during the last decade due to their unique electrical, mechanical, thermal, and optical properties. By further combining these carbon nanomaterials with external nanocrystals of metal, semiconductor, ceramic, and/or quantum dot, it is possible to achieve the evolution of nanoscale hybrids and heterostructures with mutually improved performances and multi-functionalities. In this critical review, we summarize the state-of-the-art of recent researches on the development of nanoscale hybrids and heterostructures by incorporating carbon nanomaterials with foreign nanocrystals. The discussion is also focused on nanocomposites ranging from zero-dimensional to three-dimensional according to their fabrication approaches, structural properties, and applications. With respect to the practical applications of such nano-carbon-based hybrids and heterostructures, further review was presented on the recent development of carbon-tin based nanocomposites as electrode materials for lithium-ion batteries. The behaviors of carbon materials and their interaction with tin components during the charging/discharging of such lithium-ion batteries are summarized in detail. This review article is to provide critical knowledge and inspiration for future development of nano-carbon-based hybrids and heterostructures and their application in energy conversion and storage devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42:2824–2860CrossRef Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42:2824–2860CrossRef
2.
go back to reference Li Y, Chopra N (2015) Progress in large-scale production of graphene. Part 1: chemical methods. JOM 67:34–43CrossRef Li Y, Chopra N (2015) Progress in large-scale production of graphene. Part 1: chemical methods. JOM 67:34–43CrossRef
3.
go back to reference Li Y, Chopra N (2015) Progress in large-scale production of graphene. Part 2: vapor methods. JOM 67:44–52CrossRef Li Y, Chopra N (2015) Progress in large-scale production of graphene. Part 2: vapor methods. JOM 67:44–52CrossRef
4.
go back to reference Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRef Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRef
5.
6.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
7.
go back to reference Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari AC (2012) Production and processing of graphene and 2d crystals. Mater Today 15:564–589CrossRef Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari AC (2012) Production and processing of graphene and 2d crystals. Mater Today 15:564–589CrossRef
8.
go back to reference Peng X, Chen J, Misewich JA, Wong SS (2009) Carbon nanotube–nanocrystal heterostructures. Chem Soc Rev 38:1076–1098CrossRef Peng X, Chen J, Misewich JA, Wong SS (2009) Carbon nanotube–nanocrystal heterostructures. Chem Soc Rev 38:1076–1098CrossRef
9.
go back to reference Azamian BR, Coleman KS, Davis JJ, Hanson N (2002) Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem Commun 4:366–367CrossRef Azamian BR, Coleman KS, Davis JJ, Hanson N (2002) Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem Commun 4:366–367CrossRef
10.
go back to reference Jeong S, Shim HC, Kim S, Han CS (2009) Efficient electron transfer in functional assemblies of pyridine-modified nQDs on SWNTs. ACS Nano 4:324–330CrossRef Jeong S, Shim HC, Kim S, Han CS (2009) Efficient electron transfer in functional assemblies of pyridine-modified nQDs on SWNTs. ACS Nano 4:324–330CrossRef
11.
go back to reference Grass RN, Athanassiou EK, Stark WJ (2007) Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis. Angew Chem Int Ed 46:4909–4912CrossRef Grass RN, Athanassiou EK, Stark WJ (2007) Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis. Angew Chem Int Ed 46:4909–4912CrossRef
12.
go back to reference Sun L, Banhart F (2006) Graphitic onions as reaction cells on the nanoscale. Appl Phys Lett 88:193121CrossRef Sun L, Banhart F (2006) Graphitic onions as reaction cells on the nanoscale. Appl Phys Lett 88:193121CrossRef
13.
go back to reference Wang S, Huang X, He Y, Huang H, Wu Y, Hou L, Huang B (2012) Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene. Carbon 50:2119–2125CrossRef Wang S, Huang X, He Y, Huang H, Wu Y, Hou L, Huang B (2012) Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene. Carbon 50:2119–2125CrossRef
14.
go back to reference Sun L, Rodriguez-Manzo JA, Banhart F (2006) Elastic deformation of nanometer-sized metal crystals in graphitic shells. Appl Phys Lett 89:263104CrossRef Sun L, Rodriguez-Manzo JA, Banhart F (2006) Elastic deformation of nanometer-sized metal crystals in graphitic shells. Appl Phys Lett 89:263104CrossRef
15.
go back to reference Chen J, Lu G (2006) Controlled decoration of carbon nanotubes with nanoparticles. Nanotechnol 17:2891–2894CrossRef Chen J, Lu G (2006) Controlled decoration of carbon nanotubes with nanoparticles. Nanotechnol 17:2891–2894CrossRef
16.
go back to reference Lim EJ, Choi SM, Seo MH, Kim Y, Lee S, Kim WB (2013) Highly dispersed Ag nanoparticles on nanosheets of reduced graphene oxide for oxygen reduction reaction in alkaline media. Electrochem Commun 28:100–103CrossRef Lim EJ, Choi SM, Seo MH, Kim Y, Lee S, Kim WB (2013) Highly dispersed Ag nanoparticles on nanosheets of reduced graphene oxide for oxygen reduction reaction in alkaline media. Electrochem Commun 28:100–103CrossRef
17.
go back to reference Ritz B, Heller H, Myalitsin A, Kornowski A, Martin-Martinez FJ, Melchor S, Klinke C (2010) Reversible attachment of platinum alloy nanoparticles to nonfunctionalized carbon nanotubes. ACS Nano 4:2438–2444CrossRef Ritz B, Heller H, Myalitsin A, Kornowski A, Martin-Martinez FJ, Melchor S, Klinke C (2010) Reversible attachment of platinum alloy nanoparticles to nonfunctionalized carbon nanotubes. ACS Nano 4:2438–2444CrossRef
18.
go back to reference Chopra N, Majumder M, Hinds BJ (2005) Bifunctional carbon nanotubes by sidewall protection. Adv Funct Mater 15:858–864CrossRef Chopra N, Majumder M, Hinds BJ (2005) Bifunctional carbon nanotubes by sidewall protection. Adv Funct Mater 15:858–864CrossRef
19.
go back to reference Zhang Q, Huang JQ, Qian WZ, Zhang YY, Wei F (2013) The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9:1237–1265CrossRef Zhang Q, Huang JQ, Qian WZ, Zhang YY, Wei F (2013) The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9:1237–1265CrossRef
20.
go back to reference Wu QH, Wang C, Ren JG (2013) Sn and SnO2-graphene composites as anode materials for lithium-ion batteries. Ionics 19:1875–1882CrossRef Wu QH, Wang C, Ren JG (2013) Sn and SnO2-graphene composites as anode materials for lithium-ion batteries. Ionics 19:1875–1882CrossRef
21.
go back to reference Botas C, Carriazo D, Singh G, Rojo T (2015) Sn-and SnO2-graphene flexible foams suitable as binder-free anodes for lithium ion batteries. J Mater Chem A 3:13402–13410CrossRef Botas C, Carriazo D, Singh G, Rojo T (2015) Sn-and SnO2-graphene flexible foams suitable as binder-free anodes for lithium ion batteries. J Mater Chem A 3:13402–13410CrossRef
22.
go back to reference Wang H, Rogach AL (2013) Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications. Chem Mater 26:123–133CrossRef Wang H, Rogach AL (2013) Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications. Chem Mater 26:123–133CrossRef
23.
go back to reference Lin J, Peng Z, Xiang C, Ruan G, Yan Z, Natelson D, Tour JM (2013) Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7:6001–6006CrossRef Lin J, Peng Z, Xiang C, Ruan G, Yan Z, Natelson D, Tour JM (2013) Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7:6001–6006CrossRef
24.
go back to reference Fu Y, Ma R, Shu Y, Cao Z, Ma X (2009) Preparation and characterization of SnO2/carbon nanotube composite for lithium ion battery applications. Mater Lett 63:1946–1948CrossRef Fu Y, Ma R, Shu Y, Cao Z, Ma X (2009) Preparation and characterization of SnO2/carbon nanotube composite for lithium ion battery applications. Mater Lett 63:1946–1948CrossRef
25.
go back to reference Li L, Kovalchuk A, Tour JM (2014) SnO2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability. Nano Res 7:1319–1326CrossRef Li L, Kovalchuk A, Tour JM (2014) SnO2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability. Nano Res 7:1319–1326CrossRef
26.
go back to reference Wang X, Zhou X, Yao K, Zhang J, Liu Z (2011) A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 49:133–139CrossRef Wang X, Zhou X, Yao K, Zhang J, Liu Z (2011) A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 49:133–139CrossRef
27.
go back to reference Guo Q, Zheng Z, Gao H, Ma J, Qin X (2013) SnO2/graphene composite as highly reversible anode materials for lithium ion batteries. J Power Sources 240:149–154CrossRef Guo Q, Zheng Z, Gao H, Ma J, Qin X (2013) SnO2/graphene composite as highly reversible anode materials for lithium ion batteries. J Power Sources 240:149–154CrossRef
28.
go back to reference Kim JC, Hwang IS, Seo SD, Lee GH, Shim HW, Park KS, Kim DW (2012) Superior long-term cycling stability of SnO2 nanoparticle/multiwalled carbon nanotube heterostructured electrodes for Li-ion rechargeable batteries. Nanotechnology 23:465402CrossRef Kim JC, Hwang IS, Seo SD, Lee GH, Shim HW, Park KS, Kim DW (2012) Superior long-term cycling stability of SnO2 nanoparticle/multiwalled carbon nanotube heterostructured electrodes for Li-ion rechargeable batteries. Nanotechnology 23:465402CrossRef
29.
go back to reference Chopra N, Bachas LG, Knecht MR (2009) Fabrication and biofunctionalization of carbon-encapsulated Au nanoparticles. Chem Mater 21:1176–1178CrossRef Chopra N, Bachas LG, Knecht MR (2009) Fabrication and biofunctionalization of carbon-encapsulated Au nanoparticles. Chem Mater 21:1176–1178CrossRef
30.
go back to reference Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRef Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRef
31.
go back to reference Lyon JL, Fleming DA, Stone MB, Schiffer P, Williams ME (2004) Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett 4:719–723CrossRef Lyon JL, Fleming DA, Stone MB, Schiffer P, Williams ME (2004) Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett 4:719–723CrossRef
32.
go back to reference Kanemitsu Y, Ogawa T, Shiraishi K, Takeda K (1993) Visible photoluminescene from oxidized Si nanometer-sized spheres: exciton confinement on a spherical-shell. Phys Rev B 48:4883–4886CrossRef Kanemitsu Y, Ogawa T, Shiraishi K, Takeda K (1993) Visible photoluminescene from oxidized Si nanometer-sized spheres: exciton confinement on a spherical-shell. Phys Rev B 48:4883–4886CrossRef
33.
go back to reference Cortie MB, McDonagh AM (2011) Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev 111:3713–3735CrossRef Cortie MB, McDonagh AM (2011) Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev 111:3713–3735CrossRef
34.
go back to reference Li Y, Chopra N (2014) Optical properties of nanostructured carbon and gold nanoparticle hybrids. Mater Res Soc Res Proc 1700:mrss14–1700 Li Y, Chopra N (2014) Optical properties of nanostructured carbon and gold nanoparticle hybrids. Mater Res Soc Res Proc 1700:mrss14–1700
35.
go back to reference Newman JDS, Blanchard GJ (2007) Formation and encapsulation of gold nanoparticles using a polymeric amine reducing agent. J Nanopart Res 9:861–868CrossRef Newman JDS, Blanchard GJ (2007) Formation and encapsulation of gold nanoparticles using a polymeric amine reducing agent. J Nanopart Res 9:861–868CrossRef
36.
go back to reference Wang SN, Zhang MC, Zhang WQ (2011) Yolk-shell catalyst of single Au nanoparticle encapsulated within hollow mesoporous silica microspheres. ACS Catal 1:207–211CrossRef Wang SN, Zhang MC, Zhang WQ (2011) Yolk-shell catalyst of single Au nanoparticle encapsulated within hollow mesoporous silica microspheres. ACS Catal 1:207–211CrossRef
37.
go back to reference Jia J, Seraphin S (1998) Carbon encapsulated nanoparticles of Ni Co, Cu, and Ti. J Appl Phys 83:2442–2448CrossRef Jia J, Seraphin S (1998) Carbon encapsulated nanoparticles of Ni Co, Cu, and Ti. J Appl Phys 83:2442–2448CrossRef
38.
go back to reference Nagatsu M, Yoshida T, Mesko M, Ogino A, Matsuda T, Tanaka T, Tatsuoka H, Murakami K (2006) Narrow multi-walled carbon nanotubes produced by chemical vapor deposition using graphene layer encapsulated catalytic metal particles. Carbon 44:3336–3341CrossRef Nagatsu M, Yoshida T, Mesko M, Ogino A, Matsuda T, Tanaka T, Tatsuoka H, Murakami K (2006) Narrow multi-walled carbon nanotubes produced by chemical vapor deposition using graphene layer encapsulated catalytic metal particles. Carbon 44:3336–3341CrossRef
39.
go back to reference Takagi D, Kobayashi Y, Hibino H, Suzuki S, Homma Y (2008) Mechanism of gold-catalyzed carbon material growth. Nano Lett 8:832–835CrossRef Takagi D, Kobayashi Y, Hibino H, Suzuki S, Homma Y (2008) Mechanism of gold-catalyzed carbon material growth. Nano Lett 8:832–835CrossRef
40.
go back to reference Sutter E, Sutter P, Zhu Y (2005) Assembly and interaction of Au/C core-shell nanostructures: in situ observation in the transmission electron microscope. Nano Lett 5:2092–2096CrossRef Sutter E, Sutter P, Zhu Y (2005) Assembly and interaction of Au/C core-shell nanostructures: in situ observation in the transmission electron microscope. Nano Lett 5:2092–2096CrossRef
41.
go back to reference Ugarte D (1993) How to fill and empty a graphitic onion. Chem Phys Lett 209:99–103CrossRef Ugarte D (1993) How to fill and empty a graphitic onion. Chem Phys Lett 209:99–103CrossRef
42.
go back to reference Banhart F, Redlich P, Ajayan PM (1998) The migration of metal atoms through carbon onions. Chem Phys Lett 292:554–560CrossRef Banhart F, Redlich P, Ajayan PM (1998) The migration of metal atoms through carbon onions. Chem Phys Lett 292:554–560CrossRef
43.
go back to reference Hore S, Kaiser G, Hu YS, Schulz A, Konuma M, Gotz G, Sigle W, Verhoeven A, Maier J (2008) Carbonization of polyethylene on gold oxide. J Mater Chem 18:5589–5591CrossRef Hore S, Kaiser G, Hu YS, Schulz A, Konuma M, Gotz G, Sigle W, Verhoeven A, Maier J (2008) Carbonization of polyethylene on gold oxide. J Mater Chem 18:5589–5591CrossRef
44.
go back to reference Saito Y, Nishikubo K, Kawabata K, Matsumoto T (1996) Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge. J Appl Phys 80:3062–3067CrossRef Saito Y, Nishikubo K, Kawabata K, Matsumoto T (1996) Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge. J Appl Phys 80:3062–3067CrossRef
45.
go back to reference Wang Y (1994) Encapsulation of palladium crystallites in carbon and the formation of wormlike nanostructures. J Am Chem Soc 116:397–399CrossRef Wang Y (1994) Encapsulation of palladium crystallites in carbon and the formation of wormlike nanostructures. J Am Chem Soc 116:397–399CrossRef
46.
go back to reference Kang W, Li H, Yan Y, Xiao P, Zhu L, Tang K, Zhu Y, Qian Y (2011) Worm-like palladium/carbon core-shell nanocomposites: one-step hydrothermal reduction-carbonization synthesis and electrocatalytic activity. J Phys Chem C 115:6250–6256CrossRef Kang W, Li H, Yan Y, Xiao P, Zhu L, Tang K, Zhu Y, Qian Y (2011) Worm-like palladium/carbon core-shell nanocomposites: one-step hydrothermal reduction-carbonization synthesis and electrocatalytic activity. J Phys Chem C 115:6250–6256CrossRef
47.
go back to reference Harada T, Ikeda S, Hashimoto F, Sakata T, Ikeue K, Torimoto T, Matsumura M (2010) Catalytic activity and regeneration property of a Pd nanoparticle encapsulated in a hollow porous carbon sphere for aerobic alcohol oxidation. Langmuir 26:17720–17725CrossRef Harada T, Ikeda S, Hashimoto F, Sakata T, Ikeue K, Torimoto T, Matsumura M (2010) Catalytic activity and regeneration property of a Pd nanoparticle encapsulated in a hollow porous carbon sphere for aerobic alcohol oxidation. Langmuir 26:17720–17725CrossRef
48.
go back to reference Ge X, Peng B, Ying X, Wang R, Liu X, Xiao F, Qiu S, Li J (2008) In-situ transmission electron microscopy observation of particle size effect of nanoscale platinum catalysts on the formation of fullerenelike carbon shells. Carbon 46:1411–1416CrossRef Ge X, Peng B, Ying X, Wang R, Liu X, Xiao F, Qiu S, Li J (2008) In-situ transmission electron microscopy observation of particle size effect of nanoscale platinum catalysts on the formation of fullerenelike carbon shells. Carbon 46:1411–1416CrossRef
49.
go back to reference Ikeda S, Ishino S, Harada T, Okamoto N, Sakata T, Mori H, Kuwabata S, Torimoto T, Matsumura M (2006) Ligand-free platinum nanoparticles encapsulated in a hollow porous carbon shell as a highly active heterogeneous hydrogenation catalyst. Angew Chem Int Ed 45:7063–7066CrossRef Ikeda S, Ishino S, Harada T, Okamoto N, Sakata T, Mori H, Kuwabata S, Torimoto T, Matsumura M (2006) Ligand-free platinum nanoparticles encapsulated in a hollow porous carbon shell as a highly active heterogeneous hydrogenation catalyst. Angew Chem Int Ed 45:7063–7066CrossRef
50.
go back to reference Wu Z, Lv Y, Xia Y, Webley PA, Zhao D (2012) Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst. J Am Chem Soc 134:2236–2245CrossRef Wu Z, Lv Y, Xia Y, Webley PA, Zhao D (2012) Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst. J Am Chem Soc 134:2236–2245CrossRef
51.
go back to reference Ng YH, Ikeda S, Harada T, Higashida S, Sakata T, Mori H, Matsumura M (2007) Fabrication of hollow carbon nanospheres encapsulating platinum nanoparticles using a photocatalytic reaction. Adv Mater 19:597–601CrossRef Ng YH, Ikeda S, Harada T, Higashida S, Sakata T, Mori H, Matsumura M (2007) Fabrication of hollow carbon nanospheres encapsulating platinum nanoparticles using a photocatalytic reaction. Adv Mater 19:597–601CrossRef
52.
go back to reference Wu J, Shi W, Chopra N (2012) Plasma oxidation kinetics of gold nanoparticles and their encapsulation in graphene shells by chemical vapor deposition growth. J Phys Chem C 116:12861–12874CrossRef Wu J, Shi W, Chopra N (2012) Plasma oxidation kinetics of gold nanoparticles and their encapsulation in graphene shells by chemical vapor deposition growth. J Phys Chem C 116:12861–12874CrossRef
53.
go back to reference Li Y, Chopra N (2015) Fabrication of nanoscale heterostructures comprised of graphene-encapsulated gold nanoparticles and semiconducting quantum dots for photocatalysis. Phys Chem Chem Phys 17:12881–12893CrossRef Li Y, Chopra N (2015) Fabrication of nanoscale heterostructures comprised of graphene-encapsulated gold nanoparticles and semiconducting quantum dots for photocatalysis. Phys Chem Chem Phys 17:12881–12893CrossRef
54.
go back to reference Li Y, Chopra N (2015) Gold nanoparticle integrated with nanostructured carbon and quantum dots: synthesis and optical properties. Gold Bull 48:73–83CrossRef Li Y, Chopra N (2015) Gold nanoparticle integrated with nanostructured carbon and quantum dots: synthesis and optical properties. Gold Bull 48:73–83CrossRef
55.
go back to reference Li Y, Chopra N (2015) Graphene encapsulated gold nanoparticle-quantum dot heterostructures and their electrochemical characterization. Appl Surf Sci 344:27–32CrossRef Li Y, Chopra N (2015) Graphene encapsulated gold nanoparticle-quantum dot heterostructures and their electrochemical characterization. Appl Surf Sci 344:27–32CrossRef
56.
go back to reference Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu Rev Mater Res 34:151–180CrossRef Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu Rev Mater Res 34:151–180CrossRef
57.
go back to reference Sailor MJ, Link JR (2005) “Smart dust’’: nanostructured devices in a grain of sand. Chem Commun 11:1375–1383CrossRef Sailor MJ, Link JR (2005) “Smart dust’’: nanostructured devices in a grain of sand. Chem Commun 11:1375–1383CrossRef
58.
go back to reference Lu Y, Chen SC (2004) Micro and nano-fabrication of biodegradable polymers for drug delivery. Adv Drug Delivery Rev 56:1621–1633CrossRef Lu Y, Chen SC (2004) Micro and nano-fabrication of biodegradable polymers for drug delivery. Adv Drug Delivery Rev 56:1621–1633CrossRef
59.
go back to reference Hannon JB, Kodambaka S, Ross FM, Tromp RM (2006) The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440:69–71CrossRef Hannon JB, Kodambaka S, Ross FM, Tromp RM (2006) The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440:69–71CrossRef
60.
go back to reference Gao JX, Bender CM, Murphy CJ (2003) Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 19:9065–9070CrossRef Gao JX, Bender CM, Murphy CJ (2003) Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 19:9065–9070CrossRef
61.
go back to reference Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8:1739–1746CrossRef Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8:1739–1746CrossRef
62.
go back to reference Rogers JA, Paul KE, Jackman RJ, Whitesides GM (1997) Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field. Appl Phys Lett 70:2658–2660CrossRef Rogers JA, Paul KE, Jackman RJ, Whitesides GM (1997) Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field. Appl Phys Lett 70:2658–2660CrossRef
63.
go back to reference Li Y, Chopra N (2015) Structural evolution of cobalt oxide–tungsten oxide nanowire heterostructures for photocatalysis. J Catal 329:514–521CrossRef Li Y, Chopra N (2015) Structural evolution of cobalt oxide–tungsten oxide nanowire heterostructures for photocatalysis. J Catal 329:514–521CrossRef
64.
go back to reference Li Y, Kumar K, Chopra N (2014) Fabrication and electrochemical properties of copper oxide (CuO) nanowire–cobalt oxide (Co3O4) nanoparticle heterostructures for oxygen evolution reaction. Nanomater Energy 3:93–101CrossRef Li Y, Kumar K, Chopra N (2014) Fabrication and electrochemical properties of copper oxide (CuO) nanowire–cobalt oxide (Co3O4) nanoparticle heterostructures for oxygen evolution reaction. Nanomater Energy 3:93–101CrossRef
65.
go back to reference Chopra N, Li Y, Kumar K (2014) Cobalt oxide-tungsten oxide nanowire heterostructures: Fabrication and characterization. Mater Res Soc Res Proc 1675:mrss14–1675 Chopra N, Li Y, Kumar K (2014) Cobalt oxide-tungsten oxide nanowire heterostructures: Fabrication and characterization. Mater Res Soc Res Proc 1675:mrss14–1675
66.
go back to reference Chik H, Xu JM (2004) Nanometric superlattices: non-lithographic fabrication, materials, and prospects. Mat Sci Eng R 43:103–138CrossRef Chik H, Xu JM (2004) Nanometric superlattices: non-lithographic fabrication, materials, and prospects. Mat Sci Eng R 43:103–138CrossRef
67.
go back to reference Martin CR (1994) Nanometarials—A memberane-based synthetic approach. Science 266:1961–1966CrossRef Martin CR (1994) Nanometarials—A memberane-based synthetic approach. Science 266:1961–1966CrossRef
68.
go back to reference Skinner K, Dwyer C, Washburn S (2006) Selective functionalization of arbitrary nanowires. Nano Lett 6:2758–2762CrossRef Skinner K, Dwyer C, Washburn S (2006) Selective functionalization of arbitrary nanowires. Nano Lett 6:2758–2762CrossRef
69.
go back to reference Chopra N (2010) Multifunctional and multicomponent heterostructured one-dimensional nanostructures: advances in growth, characterisation, and applications. Mater Technol 25:212–230CrossRef Chopra N (2010) Multifunctional and multicomponent heterostructured one-dimensional nanostructures: advances in growth, characterisation, and applications. Mater Technol 25:212–230CrossRef
70.
go back to reference Bellino MG, Calvo EJ, Gordillo GJ (2009) Nanowire manipulation on surfaces through electrostatic self-assembly and magnetic interactions. Phys Status Solidi R 3:1–3CrossRef Bellino MG, Calvo EJ, Gordillo GJ (2009) Nanowire manipulation on surfaces through electrostatic self-assembly and magnetic interactions. Phys Status Solidi R 3:1–3CrossRef
71.
go back to reference Guo YG, Wan LJ, Zhu CF, Yang DL, Chen DM, Bai CL (2003) Ordered Ni-Cu nanowire array with enhanced coercivity. Chem Mater 15:664–667CrossRef Guo YG, Wan LJ, Zhu CF, Yang DL, Chen DM, Bai CL (2003) Ordered Ni-Cu nanowire array with enhanced coercivity. Chem Mater 15:664–667CrossRef
72.
go back to reference Tresback JS, Vasiliev AL, Padture NP, Park SY, Berger PR (2007) Characterization and electrical properties of individual Au-NiO-Au heterojunction nanowires. IEEE Trans Nanotechnol 6:676–681CrossRef Tresback JS, Vasiliev AL, Padture NP, Park SY, Berger PR (2007) Characterization and electrical properties of individual Au-NiO-Au heterojunction nanowires. IEEE Trans Nanotechnol 6:676–681CrossRef
73.
go back to reference Wang JG, Tian ML, Kumar N, Mallouk TE (2005) Controllable template synthesis of superconducting Zn nanowires with different microstructures by electrochemical deposition. Nano Lett 5:1247–1253CrossRef Wang JG, Tian ML, Kumar N, Mallouk TE (2005) Controllable template synthesis of superconducting Zn nanowires with different microstructures by electrochemical deposition. Nano Lett 5:1247–1253CrossRef
74.
go back to reference Schonenberger C, vanderZande BMI, Fokkink LGJ, Henny M, Schmid C, Kruger M, Bachtold A, Huber R, Birk H, Staufer U (1997) Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology. J Phys Chem B 101:5497–5505CrossRef Schonenberger C, vanderZande BMI, Fokkink LGJ, Henny M, Schmid C, Kruger M, Bachtold A, Huber R, Birk H, Staufer U (1997) Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology. J Phys Chem B 101:5497–5505CrossRef
75.
go back to reference Li Y, Dykes JC, Chopra N (2013) Si nanowire-gold nanoparticles heterostructures for surface enhanced Raman spectroscopy. Mater Res Soc Res Proc 1551:mrss13–1551 Li Y, Dykes JC, Chopra N (2013) Si nanowire-gold nanoparticles heterostructures for surface enhanced Raman spectroscopy. Mater Res Soc Res Proc 1551:mrss13–1551
76.
go back to reference Wang H, Wang X, Zhang X, Qin X, Zhao Z, Miao Z, Huang N, Chen Q (2009) A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires. Biosens Bioelectron 25:142–146CrossRef Wang H, Wang X, Zhang X, Qin X, Zhao Z, Miao Z, Huang N, Chen Q (2009) A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires. Biosens Bioelectron 25:142–146CrossRef
77.
go back to reference Wang D, Qian F, Yang C, Zhong ZH, Lieber CM (2004) Rational growth of branched and hyperbranched nanowire structures. Nano Lett 4:871–874CrossRef Wang D, Qian F, Yang C, Zhong ZH, Lieber CM (2004) Rational growth of branched and hyperbranched nanowire structures. Nano Lett 4:871–874CrossRef
78.
go back to reference Wang DL, Lieber CM (2003) Inorganic materials—nanocrystals branch out. Nat Mater 2:355–356CrossRef Wang DL, Lieber CM (2003) Inorganic materials—nanocrystals branch out. Nat Mater 2:355–356CrossRef
79.
go back to reference Wang X, Ozkan CS (2008) Multisegment nanowire sensors for the detection of DNA molecules. Nano Lett 8:398–404CrossRef Wang X, Ozkan CS (2008) Multisegment nanowire sensors for the detection of DNA molecules. Nano Lett 8:398–404CrossRef
80.
go back to reference Chopra N, Wu J, Agrawal P (2015) Synthesis of nanoscale heterostructures comprised of metal nanowires, carbon nanotubes, and metal nanoparticles: investigation of their structure and electrochemical properties. J Nanomater 125970:1–13CrossRef Chopra N, Wu J, Agrawal P (2015) Synthesis of nanoscale heterostructures comprised of metal nanowires, carbon nanotubes, and metal nanoparticles: investigation of their structure and electrochemical properties. J Nanomater 125970:1–13CrossRef
81.
go back to reference Nirmal M, Brus L (1999) Luminescence photophysics in semiconductor nanocrystals. Acc Chem Res 32:407–414CrossRef Nirmal M, Brus L (1999) Luminescence photophysics in semiconductor nanocrystals. Acc Chem Res 32:407–414CrossRef
82.
go back to reference Li Y, Shi W, Gupta A, Chopra N (2015) Morphological evolution of gold nanoparticles on silicon nanowires and their plasmonics. RSC Adv 5:49708–49718CrossRef Li Y, Shi W, Gupta A, Chopra N (2015) Morphological evolution of gold nanoparticles on silicon nanowires and their plasmonics. RSC Adv 5:49708–49718CrossRef
83.
go back to reference Lauhon LJ, Gudiksen MS, Wang CL, Lieber CM (2002) Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420:57–61CrossRef Lauhon LJ, Gudiksen MS, Wang CL, Lieber CM (2002) Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420:57–61CrossRef
84.
go back to reference Li Y, Chopra N (2013) Nanoscale heterostructures comprised of silicon nanowires and gold nanoparticles encapsulated in graphitic shells for DNA immobilization. Mater Res Soc Res Proc 1572:mrss13–1572 Li Y, Chopra N (2013) Nanoscale heterostructures comprised of silicon nanowires and gold nanoparticles encapsulated in graphitic shells for DNA immobilization. Mater Res Soc Res Proc 1572:mrss13–1572
85.
go back to reference Li Y, Shi W, Dykes JC, Chopra N (2013) Growth of silicon nanowires-based heterostructures and their plasmonic modeling. Mater Res Soc Res Proc 1547:103–108CrossRef Li Y, Shi W, Dykes JC, Chopra N (2013) Growth of silicon nanowires-based heterostructures and their plasmonic modeling. Mater Res Soc Res Proc 1547:103–108CrossRef
86.
go back to reference Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274CrossRef Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274CrossRef
87.
go back to reference Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef
88.
go back to reference Vickery JL, Patil AJ, Mann S (2009) Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv Mater 21:2180–2184CrossRef Vickery JL, Patil AJ, Mann S (2009) Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv Mater 21:2180–2184CrossRef
89.
go back to reference Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876CrossRef Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876CrossRef
90.
go back to reference Gao W, Alemany LB, Ci LJ, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1:403–408CrossRef Gao W, Alemany LB, Ci LJ, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1:403–408CrossRef
91.
go back to reference Bae S, Kim H, Lee Y, Xu XF, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578CrossRef Bae S, Kim H, Lee Y, Xu XF, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578CrossRef
92.
go back to reference Han TH, Lee WJ, Lee DH, Kim JE, Choi EY, Kim SO (2010) Peptide/graphene hybrid assembly into core/shell nanowires. Adv Mater 22:2060–2064CrossRef Han TH, Lee WJ, Lee DH, Kim JE, Choi EY, Kim SO (2010) Peptide/graphene hybrid assembly into core/shell nanowires. Adv Mater 22:2060–2064CrossRef
93.
go back to reference Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300:625–627CrossRef Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300:625–627CrossRef
94.
go back to reference Han TH, Kim J, Park JS, Park CB, Ihee H, Kim SO (2007) Liquid crystalline peptide nanowires. Adv Mater 19:3924–3927CrossRef Han TH, Kim J, Park JS, Park CB, Ihee H, Kim SO (2007) Liquid crystalline peptide nanowires. Adv Mater 19:3924–3927CrossRef
95.
go back to reference Kim SW, Han TH, Kim J, Gwon H, Moon HS, Kang SW, Kim SO, Kang K (2009) Fabrication and electrochemical characterization of TiO2 three-dimensional nanonetwork based on peptide assembly. ACS Nano 3:1085–1090CrossRef Kim SW, Han TH, Kim J, Gwon H, Moon HS, Kang SW, Kim SO, Kang K (2009) Fabrication and electrochemical characterization of TiO2 three-dimensional nanonetwork based on peptide assembly. ACS Nano 3:1085–1090CrossRef
96.
go back to reference Yang ZH, Li ZF, Wu HQ, Simard B (2003) Effects of doped copper on electrochemical performance of the raw carbon nanotubes anode. Mater Lett 57:3160–3166CrossRef Yang ZH, Li ZF, Wu HQ, Simard B (2003) Effects of doped copper on electrochemical performance of the raw carbon nanotubes anode. Mater Lett 57:3160–3166CrossRef
97.
go back to reference Kitaura R, Nakanishi R, Saito T, Yoshikawa H, Awaga K, Shinohara H (2009) High-yield synthesis of ultrathin metal nanowires in carbon nanotubes. Angew Chem Int Ed 48:8298–8302CrossRef Kitaura R, Nakanishi R, Saito T, Yoshikawa H, Awaga K, Shinohara H (2009) High-yield synthesis of ultrathin metal nanowires in carbon nanotubes. Angew Chem Int Ed 48:8298–8302CrossRef
98.
go back to reference Chang Y, Lye ML, Zeng HC (2005) Large-scale synthesis of high-quality ultralong copper nanowires. Langmuir 21:3746–3748CrossRef Chang Y, Lye ML, Zeng HC (2005) Large-scale synthesis of high-quality ultralong copper nanowires. Langmuir 21:3746–3748CrossRef
99.
go back to reference Deng B, Xu AW, Chen GY, Song RQ, Chen L (2006) Synthesis of copper-core/carbon-sheath nanocables by a surfactant-assisted hydrothermal reduction/carbonization process. J Phys Chem B 110:11711–11716CrossRef Deng B, Xu AW, Chen GY, Song RQ, Chen L (2006) Synthesis of copper-core/carbon-sheath nanocables by a surfactant-assisted hydrothermal reduction/carbonization process. J Phys Chem B 110:11711–11716CrossRef
100.
go back to reference Zhang GY, Wang EG (2003) Cu-filled carbon nanotubes by simultaneous plasma-assisted copper incorporation. Appl Phys Lett 82:1926–1928CrossRef Zhang GY, Wang EG (2003) Cu-filled carbon nanotubes by simultaneous plasma-assisted copper incorporation. Appl Phys Lett 82:1926–1928CrossRef
101.
go back to reference Zhao Y, Zhang Y, Li Y, Yan Z (2012) A flexible chemical vapor deposition method to synthesize copper@carbon core-shell structured nanowires and the study of their structural electrical properties. New J Chem 36:1161–1169CrossRef Zhao Y, Zhang Y, Li Y, Yan Z (2012) A flexible chemical vapor deposition method to synthesize copper@carbon core-shell structured nanowires and the study of their structural electrical properties. New J Chem 36:1161–1169CrossRef
102.
go back to reference Wang R, Hao Y, Wang Z, Gong H, Thong JTL (2010) Large-diameter graphene nanotubes synthesized using Ni nanowire templates. Nano Lett 10:4844–4850CrossRef Wang R, Hao Y, Wang Z, Gong H, Thong JTL (2010) Large-diameter graphene nanotubes synthesized using Ni nanowire templates. Nano Lett 10:4844–4850CrossRef
103.
go back to reference Liu Z, Zhan Y, Shi G, Moldovan S, Gharbi M, Song L, Ma L, Gao W, Huang J, Vajtai R, Banhart F, Sharma P, Lou J, Ajayan PM (2012) Anomalous high capacitance in a coaxial single nanowire capacitor. Nat Commun 3:1–7 Liu Z, Zhan Y, Shi G, Moldovan S, Gharbi M, Song L, Ma L, Gao W, Huang J, Vajtai R, Banhart F, Sharma P, Lou J, Ajayan PM (2012) Anomalous high capacitance in a coaxial single nanowire capacitor. Nat Commun 3:1–7
104.
go back to reference Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2004) Aligned multiwalled carbon nanotube membranes. Science 303:62–65CrossRef Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2004) Aligned multiwalled carbon nanotube membranes. Science 303:62–65CrossRef
105.
go back to reference Andrews R, Jacques D, Rao AM, Derbyshire F, Qian D, Fan X, Dickey EC, Chen J (1999) Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem Phys Lett 303:467–474CrossRef Andrews R, Jacques D, Rao AM, Derbyshire F, Qian D, Fan X, Dickey EC, Chen J (1999) Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem Phys Lett 303:467–474CrossRef
106.
go back to reference Fan SS, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai HJ (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283:512–514CrossRef Fan SS, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai HJ (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283:512–514CrossRef
107.
go back to reference Hu JT, Ouyang M, Yang PD, Lieber CM (1999) Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399:48–51CrossRef Hu JT, Ouyang M, Yang PD, Lieber CM (1999) Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399:48–51CrossRef
108.
go back to reference Luo J, Zhu J, Huang Z, Zhang L (2007) Arrays of Ni nanowire/multiwalled carbon nanotube/amorphous carbon nanotube heterojunctions containing Schottky contacts. Appl Phys Lett 90:033114/1–033114/3 Luo J, Zhu J, Huang Z, Zhang L (2007) Arrays of Ni nanowire/multiwalled carbon nanotube/amorphous carbon nanotube heterojunctions containing Schottky contacts. Appl Phys Lett 90:033114/1–033114/3
109.
go back to reference Che GL, Lakshmi BB, Fisher ER, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349CrossRef Che GL, Lakshmi BB, Fisher ER, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349CrossRef
110.
go back to reference An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 11:387–392CrossRef An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 11:387–392CrossRef
111.
go back to reference Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91:37–50CrossRef Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91:37–50CrossRef
112.
go back to reference Shaijumon MM, Ou FS, Ci LJ, Ajayan PM (2008) Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes. Chem Commun 20:2373–2375CrossRef Shaijumon MM, Ou FS, Ci LJ, Ajayan PM (2008) Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes. Chem Commun 20:2373–2375CrossRef
113.
go back to reference Ou FS, Shaijumon MM, Ajayan PM (2008) Controlled manipulation of giant hybrid inorganic nanowire assemblies. Nano Lett 8:1853–1857CrossRef Ou FS, Shaijumon MM, Ajayan PM (2008) Controlled manipulation of giant hybrid inorganic nanowire assemblies. Nano Lett 8:1853–1857CrossRef
114.
go back to reference Sun S, Gao L, Liu Y, Sun J (2011) Assembly of CdSe nanoparticles on graphene for low-temperature fabrication of quantum dot sensitized solar cell. Appl Phys Lett 98:093112CrossRef Sun S, Gao L, Liu Y, Sun J (2011) Assembly of CdSe nanoparticles on graphene for low-temperature fabrication of quantum dot sensitized solar cell. Appl Phys Lett 98:093112CrossRef
115.
go back to reference Lightcap IV, Kamat PV (2012) Fortification of CdSe quantum dots with graphene oxide. Excited state interactions and light energy conversion. J Am Chem Soc 134:7109–7116CrossRef Lightcap IV, Kamat PV (2012) Fortification of CdSe quantum dots with graphene oxide. Excited state interactions and light energy conversion. J Am Chem Soc 134:7109–7116CrossRef
116.
go back to reference Guo S, Bao D, Upadhyayula S, Wang W, Guvenc AB, Kyle JR, Ozkan M (2013) Photoinduced electron transfer between pyridine coated cadmium selenide quantum dots and single sheet graphene. Adv Funct Mater 23:5199–5211CrossRef Guo S, Bao D, Upadhyayula S, Wang W, Guvenc AB, Kyle JR, Ozkan M (2013) Photoinduced electron transfer between pyridine coated cadmium selenide quantum dots and single sheet graphene. Adv Funct Mater 23:5199–5211CrossRef
117.
go back to reference Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133:10878–10884CrossRef Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133:10878–10884CrossRef
118.
go back to reference Fu Y, Chen H, Sun X, Wang X (2012) Combination of cobalt ferrite and graphene: high-performance and recyclable visible-light photocatalysis. Appl Catal B 111:280–287CrossRef Fu Y, Chen H, Sun X, Wang X (2012) Combination of cobalt ferrite and graphene: high-performance and recyclable visible-light photocatalysis. Appl Catal B 111:280–287CrossRef
119.
go back to reference Banerjee S, Wong SS (2002) Synthesis and characterization of carbon nanotube-nanocrystal heterostructures. Nano Lett 2:195–200CrossRef Banerjee S, Wong SS (2002) Synthesis and characterization of carbon nanotube-nanocrystal heterostructures. Nano Lett 2:195–200CrossRef
120.
go back to reference Peng X, Wong SS (2009) Controlling nanocrystal density and location on carbon nanotube templates. Chem Mater 21:682–694CrossRef Peng X, Wong SS (2009) Controlling nanocrystal density and location on carbon nanotube templates. Chem Mater 21:682–694CrossRef
121.
go back to reference Azamian BR, Coleman KS, Davis JJ, Hanson N, Green ML (2002) Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem Commun 4:366–367CrossRef Azamian BR, Coleman KS, Davis JJ, Hanson N, Green ML (2002) Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem Commun 4:366–367CrossRef
122.
go back to reference Olek M, Hilgendorff M, Giersig M (2007) A simple route for the attachment of colloidal nanocrystals to noncovalently modified multiwalled carbon nanotubes. Colloids Surf A 292:83–85CrossRef Olek M, Hilgendorff M, Giersig M (2007) A simple route for the attachment of colloidal nanocrystals to noncovalently modified multiwalled carbon nanotubes. Colloids Surf A 292:83–85CrossRef
123.
go back to reference Li Y, Chopra N (2013) Fabrication of thermally-conductive carbon nanotubes-copper oxide heterostructures. Mater Res Soc Res Proc 1543:119–124CrossRef Li Y, Chopra N (2013) Fabrication of thermally-conductive carbon nanotubes-copper oxide heterostructures. Mater Res Soc Res Proc 1543:119–124CrossRef
124.
go back to reference Li Y, Chopra N (2014) Chemically modified and doped carbon nanotube-based nanocomposites with tunable thermal conductivity gradient. Carbon 77:675–687CrossRef Li Y, Chopra N (2014) Chemically modified and doped carbon nanotube-based nanocomposites with tunable thermal conductivity gradient. Carbon 77:675–687CrossRef
125.
go back to reference Li Y, Jiang L, Li J, Liu Y (2014) Novel phosphorus-doped lead oxide electrode for oxygen evolution reaction. RSC Adv 4:5339–5342CrossRef Li Y, Jiang L, Li J, Liu Y (2014) Novel phosphorus-doped lead oxide electrode for oxygen evolution reaction. RSC Adv 4:5339–5342CrossRef
126.
go back to reference Li Y, Jiang L, Liu F, Li J, Liu Y (2014) Novel phosphorus-doped PbO2–MnO2 bicontinuous electrodes for oxygen evolution reaction. RSC Adv 4:24020–24028CrossRef Li Y, Jiang L, Liu F, Li J, Liu Y (2014) Novel phosphorus-doped PbO2–MnO2 bicontinuous electrodes for oxygen evolution reaction. RSC Adv 4:24020–24028CrossRef
127.
go back to reference Li Y, Jiang LX, Lv XJ, Lai YQ, Zhang HL, Li J, Liu YX (2011) Oxygen evolution and corrosion behaviors of co-deposited Pb/Pb-MnO2 composite anode for electrowinning of nonferrous metals. Hydrometallurgy 109:252–257CrossRef Li Y, Jiang LX, Lv XJ, Lai YQ, Zhang HL, Li J, Liu YX (2011) Oxygen evolution and corrosion behaviors of co-deposited Pb/Pb-MnO2 composite anode for electrowinning of nonferrous metals. Hydrometallurgy 109:252–257CrossRef
128.
go back to reference Lai Y, Li Y, Jiang L, Xu W, Lv X, Li J, Liu Y (2012) Electrochemical behaviors of co-deposited Pb/Pb–MnO2 composite anode in sulfuric acid solution–Tafel and EIS investigations. J Electroanal Chem 671:16–23CrossRef Lai Y, Li Y, Jiang L, Xu W, Lv X, Li J, Liu Y (2012) Electrochemical behaviors of co-deposited Pb/Pb–MnO2 composite anode in sulfuric acid solution–Tafel and EIS investigations. J Electroanal Chem 671:16–23CrossRef
129.
go back to reference Lai YQ, Li Y, Jiang LX, Lv XJ, Li J, Liu YX (2012) Electrochemical performance of a Pb/Pb-MnO2 composite anode in sulfuric acid solution containing Mn2+. Hydrometallurgy 115:64–70CrossRef Lai YQ, Li Y, Jiang LX, Lv XJ, Li J, Liu YX (2012) Electrochemical performance of a Pb/Pb-MnO2 composite anode in sulfuric acid solution containing Mn2+. Hydrometallurgy 115:64–70CrossRef
130.
go back to reference Chen JS, Lou XWD (2013) SnO2-based nanomaterials: synthesis and application in Lithium-Ion batteries. Small 9:1877–1893CrossRef Chen JS, Lou XWD (2013) SnO2-based nanomaterials: synthesis and application in Lithium-Ion batteries. Small 9:1877–1893CrossRef
131.
go back to reference Liang M, Zhi L (2009) Graphene-based electrode materials for rechargeable lithium batteries. J Mater Chem 19:5871–5878CrossRef Liang M, Zhi L (2009) Graphene-based electrode materials for rechargeable lithium batteries. J Mater Chem 19:5871–5878CrossRef
132.
go back to reference Hernandez D, Mendoza F, Febus E, Weiner BR, Morell G (2014) Binder free SnO2-CNT composite as anode material for Li-Ion battery. J Nanotech 2014:381273 Hernandez D, Mendoza F, Febus E, Weiner BR, Morell G (2014) Binder free SnO2-CNT composite as anode material for Li-Ion battery. J Nanotech 2014:381273
133.
go back to reference Yao F, Pham DT, Lee YH (2015) Carbon-based materials for lithium-ion batteries, electrochemical capacitors, and their hybrid devices. ChemSusChem 8:2284–2311CrossRef Yao F, Pham DT, Lee YH (2015) Carbon-based materials for lithium-ion batteries, electrochemical capacitors, and their hybrid devices. ChemSusChem 8:2284–2311CrossRef
134.
go back to reference Chou SL, Wang JZ, Zhong C, Rahman MM, Liu HK, Dou SX (2009) A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries. Electrochim Acta 54:7519–7524CrossRef Chou SL, Wang JZ, Zhong C, Rahman MM, Liu HK, Dou SX (2009) A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries. Electrochim Acta 54:7519–7524CrossRef
135.
go back to reference Su X, Wu Q, Li J, Xiao X, Lott A, Lu W, Wu J (2014) Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater 4:1300882CrossRef Su X, Wu Q, Li J, Xiao X, Lott A, Lu W, Wu J (2014) Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater 4:1300882CrossRef
136.
go back to reference Terranova ML, Orlanducci S, Tamburri E, Guglielmotti V, Rossi M (2014) Si/C hybrid nanostructures for Li-ion anodes: an overview. J Power Sources 246:167–177CrossRef Terranova ML, Orlanducci S, Tamburri E, Guglielmotti V, Rossi M (2014) Si/C hybrid nanostructures for Li-ion anodes: an overview. J Power Sources 246:167–177CrossRef
137.
go back to reference Liang B, Liu Y, Xu Y (2014) Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J Power Sources 267:469–490CrossRef Liang B, Liu Y, Xu Y (2014) Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J Power Sources 267:469–490CrossRef
138.
go back to reference Zhang M, Wang T, Cao G (2015) Promises and challenges of tin-based compounds as anode materials for lithium-ion batteries. Int Mater Rev 60:330–352CrossRef Zhang M, Wang T, Cao G (2015) Promises and challenges of tin-based compounds as anode materials for lithium-ion batteries. Int Mater Rev 60:330–352CrossRef
139.
go back to reference Chen JS, Lou XWD (2013) SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9:1877–1893CrossRef Chen JS, Lou XWD (2013) SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9:1877–1893CrossRef
140.
go back to reference Lou XW, Li CM, Archer LA (2009) Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv Mater 21:2536–2539CrossRef Lou XW, Li CM, Archer LA (2009) Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv Mater 21:2536–2539CrossRef
141.
go back to reference Wang B, Luo B, Li X, Zhi L (2012) The dimensionality of Sn anodes in Li-ion batteries. Mater Today 15:544–552CrossRef Wang B, Luo B, Li X, Zhi L (2012) The dimensionality of Sn anodes in Li-ion batteries. Mater Today 15:544–552CrossRef
142.
go back to reference Wang Y, Lee JY, Zeng HC (2005) Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem Mater 17:3899–3903CrossRef Wang Y, Lee JY, Zeng HC (2005) Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem Mater 17:3899–3903CrossRef
143.
go back to reference Wu FD, Wu M, Wang Y (2011) Antimony-doped tin oxide nanotubes for high capacity lithium storage. Electrochem Commun 13:433–436CrossRef Wu FD, Wu M, Wang Y (2011) Antimony-doped tin oxide nanotubes for high capacity lithium storage. Electrochem Commun 13:433–436CrossRef
144.
go back to reference Meduri P, Pendyala C, Kumar V, Sumanasekera GU, Sunkara MK (2009) Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Nano Lett 9:612–616CrossRef Meduri P, Pendyala C, Kumar V, Sumanasekera GU, Sunkara MK (2009) Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Nano Lett 9:612–616CrossRef
145.
go back to reference Deng D, Lee JY (2009) Reversible storage of lithium in a rambutan-like tin-carbon electrode. Angew Chem Int Ed 121:1688–1691CrossRef Deng D, Lee JY (2009) Reversible storage of lithium in a rambutan-like tin-carbon electrode. Angew Chem Int Ed 121:1688–1691CrossRef
146.
go back to reference Lou XW, Deng D, Lee JY, Archer LA (2008) Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties. Chem Mater 20:6562–6566CrossRef Lou XW, Deng D, Lee JY, Archer LA (2008) Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties. Chem Mater 20:6562–6566CrossRef
147.
go back to reference Cui WJ, Li F, Liu HJ, Wang CX, Xia YY (2009) Core-shell carbon-coated Cu6Sn5 prepared by in situ polymerization as a high-performance anode material for lithium-ion batteries. J Mater Chem 19:7202–7207CrossRef Cui WJ, Li F, Liu HJ, Wang CX, Xia YY (2009) Core-shell carbon-coated Cu6Sn5 prepared by in situ polymerization as a high-performance anode material for lithium-ion batteries. J Mater Chem 19:7202–7207CrossRef
148.
go back to reference Yu X, Yang S, Zhang B, Shao D, Dong X, Fang Y, Li Z, Wang H (2011) Controlled synthesis of SnO2@carbon core-shell nanochains as high-performance anodes for lithium-ion batteries. J Mater Chem 21:12295–12302CrossRef Yu X, Yang S, Zhang B, Shao D, Dong X, Fang Y, Li Z, Wang H (2011) Controlled synthesis of SnO2@carbon core-shell nanochains as high-performance anodes for lithium-ion batteries. J Mater Chem 21:12295–12302CrossRef
149.
go back to reference Luo B, Wang B, Liang M, Ning J, Li X, Zhi L (2012) Reduced graphene oxide-mediated growth of uniform tin-core/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties. Adv Mater 24:1405–1409CrossRef Luo B, Wang B, Liang M, Ning J, Li X, Zhi L (2012) Reduced graphene oxide-mediated growth of uniform tin-core/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties. Adv Mater 24:1405–1409CrossRef
150.
go back to reference Seo SD, Lee GH, Lim AH, Min KM, Kim JC, Shim HW, Park KS, Kim DW (2012) Direct assembly of tin-MWCNT 3D-networked anode for rechargeable lithium ion batteries. RSC Adv 2:3315–3320CrossRef Seo SD, Lee GH, Lim AH, Min KM, Kim JC, Shim HW, Park KS, Kim DW (2012) Direct assembly of tin-MWCNT 3D-networked anode for rechargeable lithium ion batteries. RSC Adv 2:3315–3320CrossRef
151.
go back to reference Yu Y, Gu L, Wang C, Dhanabalan A, van Aken PA, Maier J (2009) Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew Chem Int Ed 48:6485–6489CrossRef Yu Y, Gu L, Wang C, Dhanabalan A, van Aken PA, Maier J (2009) Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew Chem Int Ed 48:6485–6489CrossRef
152.
go back to reference Wang G, Wang B, Wang X, Park J, Dou S, Ahn H, Kim K (2009) Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J Mater Chem 19:8378–8384CrossRef Wang G, Wang B, Wang X, Park J, Dou S, Ahn H, Kim K (2009) Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J Mater Chem 19:8378–8384CrossRef
153.
go back to reference Hummers WS, Offema RE (1958) Preparation of graphene oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offema RE (1958) Preparation of graphene oxide. J Am Chem Soc 80:1339CrossRef
154.
go back to reference Paek SM, Yoo E, Honma I (2009) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett 9:72–75CrossRef Paek SM, Yoo E, Honma I (2009) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett 9:72–75CrossRef
155.
go back to reference Luo B, Wang B, Li X, Jia Y, Liang M, Zhi L (2012) Graphene-confined Sn nanosheets with enhanced lithium storage capability. Adv Mater 24:3538–3543CrossRef Luo B, Wang B, Li X, Jia Y, Liang M, Zhi L (2012) Graphene-confined Sn nanosheets with enhanced lithium storage capability. Adv Mater 24:3538–3543CrossRef
156.
go back to reference Li X, Meng X, Liu J, Geng D, Zhang Y, Banis MN, Li Y, Yang J, Li R, Sun X, Cai M, Verbrugge MW (2012) Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv Funct Mater 22:1647–1654CrossRef Li X, Meng X, Liu J, Geng D, Zhang Y, Banis MN, Li Y, Yang J, Li R, Sun X, Cai M, Verbrugge MW (2012) Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv Funct Mater 22:1647–1654CrossRef
157.
go back to reference Ji L, Tan Z, Kuykendall T, An EJ, Fu Y, Battaglia V, Zhang Y (2011) Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high-capacity lithium storage. Energy Environ Sci 4:3611–3616CrossRef Ji L, Tan Z, Kuykendall T, An EJ, Fu Y, Battaglia V, Zhang Y (2011) Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high-capacity lithium storage. Energy Environ Sci 4:3611–3616CrossRef
158.
go back to reference Hassoun J, Panero S, Simon P, Taberna PL, Scrosati B (2007) High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries. Adv Mater 19:1632–1635CrossRef Hassoun J, Panero S, Simon P, Taberna PL, Scrosati B (2007) High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries. Adv Mater 19:1632–1635CrossRef
159.
go back to reference Wang Y, Lee JY, Zeng HC (2005) Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem Mater 17:3899–3903CrossRef Wang Y, Lee JY, Zeng HC (2005) Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem Mater 17:3899–3903CrossRef
160.
go back to reference Guler MO, Cevher O, Cetinkaya T, Tocoglu U, Akbulut H (2014) Nanocomposite anodes for lithium-ion batteries based on SnO2 on multiwalled carbon nanotubes. Int J Energy Res 38:487–498CrossRef Guler MO, Cevher O, Cetinkaya T, Tocoglu U, Akbulut H (2014) Nanocomposite anodes for lithium-ion batteries based on SnO2 on multiwalled carbon nanotubes. Int J Energy Res 38:487–498CrossRef
161.
go back to reference Zhao Q, Ma L, Zhang Q, Wang C, Xu X (2015) SnO2-based nanomaterials: synthesis and application in lithium-ion batteries and supercapacitors. J Nanomater 2015:850147 Zhao Q, Ma L, Zhang Q, Wang C, Xu X (2015) SnO2-based nanomaterials: synthesis and application in lithium-ion batteries and supercapacitors. J Nanomater 2015:850147
Metadata
Title
Nano-carbon-based hybrids and heterostructures: progress in growth and application for lithium-ion batteries
Authors
Yuan Li
Junchi Wu
Nitin Chopra
Publication date
01-12-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 24/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9429-7

Other articles of this Issue 24/2015

Journal of Materials Science 24/2015 Go to the issue

Premium Partners