Skip to main content
Top

2018 | OriginalPaper | Chapter

11. Large Time Behavior of the Navier-Stokes Flow

Authors : Lorenzo Brandolese, Maria E. Schonbek

Published in: Handbook of Mathematical Analysis in Mechanics of Viscous Fluids

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Different results related to the asymptotic behavior of incompressible fluid equations are analyzed as time tends to infinity. The main focus is on the solutions to the Navier-Stokes equations, but in the final section, a brief discussion is added on solutions to magnetohydrodynamics, liquid crystals, and quasi-geostrophic and Boussinesq equations. Consideration is given to results on decay, asymptotic profiles, and stability for finite and nonfinite energy solutions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Abidi, G. Gui, P. Zhang, On the decay and stability of global solutions to the 3D inhomogeneous Navier–Stokes equations. Commun. Pure Appl. Math. 64(6), 832–881 (2011)MathSciNetMATHCrossRef H. Abidi, G. Gui, P. Zhang, On the decay and stability of global solutions to the 3D inhomogeneous Navier–Stokes equations. Commun. Pure Appl. Math. 64(6), 832–881 (2011)MathSciNetMATHCrossRef
2.
go back to reference R. Agapito, M. Schonbek, Non-uniform decay of MHD equations with and without magnetic diffusion. Commun. Partial Differ. Equ. 32(10–12), 1791–1812 (2007)MathSciNetMATHCrossRef R. Agapito, M. Schonbek, Non-uniform decay of MHD equations with and without magnetic diffusion. Commun. Partial Differ. Equ. 32(10–12), 1791–1812 (2007)MathSciNetMATHCrossRef
3.
go back to reference C. Amrouche, V. Girault, M.E. Schonbek, T.P. Schonbek, Point-wise decay of solutions and of higher derivatives to Navier–Stokes equation. SIAM J. Math. Anal. 31(4), 740–753 (2000)MathSciNetMATHCrossRef C. Amrouche, V. Girault, M.E. Schonbek, T.P. Schonbek, Point-wise decay of solutions and of higher derivatives to Navier–Stokes equation. SIAM J. Math. Anal. 31(4), 740–753 (2000)MathSciNetMATHCrossRef
4.
go back to reference P. Auscher, S. Dubois, P. Tchamitchian, On the stability of global solutions to Navier–Stokes equations in the space. J. Math. Pures Appl. (9) 83(6), 673–697 (2004) (English, with English and French summaries) P. Auscher, S. Dubois, P. Tchamitchian, On the stability of global solutions to Navier–Stokes equations in the space. J. Math. Pures Appl. (9) 83(6), 673–697 (2004) (English, with English and French summaries)
5.
go back to reference H.-O. Bae, L. Brandolese, On the effect of external forces on incompressible fluid motions at large distances. Ann. Univ. Ferrara Sez. VII Sci. Mat. 55(2), 225–238 (2009)MathSciNetMATHCrossRef H.-O. Bae, L. Brandolese, On the effect of external forces on incompressible fluid motions at large distances. Ann. Univ. Ferrara Sez. VII Sci. Mat. 55(2), 225–238 (2009)MathSciNetMATHCrossRef
6.
go back to reference H.-O. Bae, B.J. Jin, Temporal and spatial decays for the Navier–Stokes equations. Proc. R. Soc. Edinb. Sect. A 135(3), 461–477 (2005)MathSciNetMATHCrossRef H.-O. Bae, B.J. Jin, Temporal and spatial decays for the Navier–Stokes equations. Proc. R. Soc. Edinb. Sect. A 135(3), 461–477 (2005)MathSciNetMATHCrossRef
7.
go back to reference M. Ben-Artzi, Global solutions of two-dimensional Navier–Stokes and Euler equations. Arch. Ration. Mech. Anal. 128(4), 329–358 (1994)MathSciNetMATHCrossRef M. Ben-Artzi, Global solutions of two-dimensional Navier–Stokes and Euler equations. Arch. Ration. Mech. Anal. 128(4), 329–358 (1994)MathSciNetMATHCrossRef
8.
go back to reference C. Bjorland, L. Brandolese, D. Iftimie, M. Schonbek, L p -solutions of the steady-state Navier–Stokes equations with rough external forces. Commun. Partial Differ. Equ. 36(2), 216–246 (2011)MATHMathSciNetCrossRef C. Bjorland, L. Brandolese, D. Iftimie, M. Schonbek, L p -solutions of the steady-state Navier–Stokes equations with rough external forces. Commun. Partial Differ. Equ. 36(2), 216–246 (2011)MATHMathSciNetCrossRef
9.
go back to reference C. Bjorland, C. Niche, On the decay of infinite energy solutions to the Navier–Stokes equations in the plane. Phys. D 240(7), 670–674 (2011)MathSciNetMATHCrossRef C. Bjorland, C. Niche, On the decay of infinite energy solutions to the Navier–Stokes equations in the plane. Phys. D 240(7), 670–674 (2011)MathSciNetMATHCrossRef
10.
go back to reference C. Bjorland, M. Schonbek, Existence and stability of steady-state solutions with finite energy for the Navier–Stokes equation in the whole space. Nonlinearity 22(7), 1615–1637 (2009)MathSciNetMATHCrossRef C. Bjorland, M. Schonbek, Existence and stability of steady-state solutions with finite energy for the Navier–Stokes equation in the whole space. Nonlinearity 22(7), 1615–1637 (2009)MathSciNetMATHCrossRef
11.
go back to reference C. Bjorland, M. Schonbek, Poincaré’s inequality and diffusive evolution equations. Adv. Differ. Equ. 14(3–4), 241–260 (2009), MR2493562 (2010a:35006) C. Bjorland, M. Schonbek, Poincaré’s inequality and diffusive evolution equations. Adv. Differ. Equ. 14(3–4), 241–260 (2009), MR2493562 (2010a:35006)
12.
go back to reference W. Borchers, T. Miyakawa, Algebraic L2 decay for Navier–Stokes flows in exterior domains. Acta Math. 165(3–4), 189–227 (1990)MathSciNetMATHCrossRef W. Borchers, T. Miyakawa, Algebraic L2 decay for Navier–Stokes flows in exterior domains. Acta Math. 165(3–4), 189–227 (1990)MathSciNetMATHCrossRef
13.
go back to reference W. Borchers, T. Miyakawa, Algebraic L2 decay for Navier–Stokes flows in exterior domains. II. Hiroshima Math. J. 21(3), 621–640 (1991) MR1148998 (93g:35111) W. Borchers, T. Miyakawa, Algebraic L2 decay for Navier–Stokes flows in exterior domains. II. Hiroshima Math. J. 21(3), 621–640 (1991) MR1148998 (93g:35111)
14.
go back to reference W. Borchers, T. Miyakawa, L2-decay for Navier–Stokes flows in unbounded domains, with application to exterior stationary flows. Arch. Ration. Mech. Anal. 118(3), 273–295 (1992)MATHCrossRef W. Borchers, T. Miyakawa, L2-decay for Navier–Stokes flows in unbounded domains, with application to exterior stationary flows. Arch. Ration. Mech. Anal. 118(3), 273–295 (1992)MATHCrossRef
15.
16.
go back to reference L. Brandolese, On the localization of symmetric and asymmetric solutions of the Navier–Stokes equations in \(\mathbb{R}^{n}\). C. R. Acad. Sci. Paris Sér. I Math. 332(2), 125–130 (2001)MathSciNetMATHCrossRef L. Brandolese, On the localization of symmetric and asymmetric solutions of the Navier–Stokes equations in \(\mathbb{R}^{n}\). C. R. Acad. Sci. Paris Sér. I Math. 332(2), 125–130 (2001)MathSciNetMATHCrossRef
17.
18.
go back to reference L. Brandolese, Asymptotic behavior of the energy and point-wise estimates for solutions to the Navier–Stokes equations. Rev. Mat. Iberoam. 20(1), 223–256 (2004)MathSciNetMATHCrossRef L. Brandolese, Asymptotic behavior of the energy and point-wise estimates for solutions to the Navier–Stokes equations. Rev. Mat. Iberoam. 20(1), 223–256 (2004)MathSciNetMATHCrossRef
19.
go back to reference L. Brandolese, Application of the realization of homogeneous Sobolev spaces to Navier–Stokes. SIAM J. Math. Anal. 37(2), 673–683 (2005) (electronic)MathSciNetMATHCrossRef L. Brandolese, Application of the realization of homogeneous Sobolev spaces to Navier–Stokes. SIAM J. Math. Anal. 37(2), 673–683 (2005) (electronic)MathSciNetMATHCrossRef
20.
21.
go back to reference L. Brandolese, Fine properties of self-similar solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 192(3), 375–401 (2009)MathSciNetMATHCrossRef L. Brandolese, Fine properties of self-similar solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 192(3), 375–401 (2009)MathSciNetMATHCrossRef
22.
go back to reference L. Brandolese, Characterization of solutions to dissipative systems with sharp algebraic decay. SIAM J. Math. Anal. 48(3), 1616–1633 (2016). arXiv:1509.05928 L. Brandolese, Characterization of solutions to dissipative systems with sharp algebraic decay. SIAM J. Math. Anal. 48(3), 1616–1633 (2016). arXiv:1509.05928
23.
go back to reference L. Brandolese, Y. Meyer, On the instantaneous spreading for the Navier–Stokes system in the whole space. ESAIM Control Optim. Calc. Var. 8 273–285 (2002) (A tribute to J. L. Lions)MathSciNetMATHCrossRef L. Brandolese, Y. Meyer, On the instantaneous spreading for the Navier–Stokes system in the whole space. ESAIM Control Optim. Calc. Var. 8 273–285 (2002) (A tribute to J. L. Lions)MathSciNetMATHCrossRef
24.
go back to reference L. Brandolese, M. Schonbek, Large time decay and growth for solutions of a viscous Boussinesq system. Trans. Am. Math. Soc. 364(10), 5057–5090 (2012)MathSciNetMATHCrossRef L. Brandolese, M. Schonbek, Large time decay and growth for solutions of a viscous Boussinesq system. Trans. Am. Math. Soc. 364(10), 5057–5090 (2012)MathSciNetMATHCrossRef
25.
go back to reference L. Brandolese, F. Vigneron, New asymptotic profiles of nonstationary solutions of the Navier–Stokes system. J. Math. Pures Appl. (9) 88(1), 64–86 (2007)MathSciNetMATHCrossRef L. Brandolese, F. Vigneron, New asymptotic profiles of nonstationary solutions of the Navier–Stokes system. J. Math. Pures Appl. (9) 88(1), 64–86 (2007)MathSciNetMATHCrossRef
26.
go back to reference L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35(6), 771–831 (1982)MathSciNetMATHCrossRef L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35(6), 771–831 (1982)MathSciNetMATHCrossRef
27.
go back to reference L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)MathSciNetMATHCrossRef L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)MathSciNetMATHCrossRef
28.
go back to reference C. Calderón, Existence of weak solutions for the Navier–Stokes equations with initial data in L p . Trans. Am. Math. Soc. 318 (1), 179–200 (1990)MATHMathSciNet C. Calderón, Existence of weak solutions for the Navier–Stokes equations with initial data in L p . Trans. Am. Math. Soc. 318 (1), 179–200 (1990)MATHMathSciNet
29.
go back to reference M. Cannone, Ondelettes, paraproduits et Navier–Stokes. Diderot Editeur, Paris, 1995. (With a preface by Yves Meyer)MATH M. Cannone, Ondelettes, paraproduits et Navier–Stokes. Diderot Editeur, Paris, 1995. (With a preface by Yves Meyer)MATH
30.
go back to reference M. Cannone, Harmonic analysis tools for solving the incompressible Navier–Stokes equations. Handbook of mathematical fluid dynamics, vol. III. Edited by S.J. Friedlander and D. Serre, Elsevier (2004), 161–244CrossRef M. Cannone, Harmonic analysis tools for solving the incompressible Navier–Stokes equations. Handbook of mathematical fluid dynamics, vol. III. Edited by S.J. Friedlander and D. Serre, Elsevier (2004), 161–244CrossRef
31.
go back to reference M. Cannone, C. He, G. Karch, Slowly Decaying Solutions to Incompressible Navier–Stokes System. Gakuto International Series. Mathematical Sciences and Applications, vol. 35 (2011). ISBN:978-0-444-51556-8 M. Cannone, C. He, G. Karch, Slowly Decaying Solutions to Incompressible Navier–Stokes System. Gakuto International Series. Mathematical Sciences and Applications, vol. 35 (2011). ISBN:978-0-444-51556-8
32.
go back to reference M. Cannone, Y. Meyer, F. Planchon, Solutions auto-similaires des équations de Navier–Stokes. Séminaire sur les Équ. aux Dérivées Partielles, 1993–1994, École Polytech., Palaiseau, 1994, pp. Exp. No. VIII, 12 M. Cannone, Y. Meyer, F. Planchon, Solutions auto-similaires des équations de Navier–Stokes. Séminaire sur les Équ. aux Dérivées Partielles, 1993–1994, École Polytech., Palaiseau, 1994, pp. Exp. No. VIII, 12
33.
go back to reference M. Cannone, F. Planchon, Self-similar solutions for Navier–Stokes equations in R3. Commun. Partial Differ. Equ. 21(1–2), 179–193 (1996)MATHCrossRef M. Cannone, F. Planchon, Self-similar solutions for Navier–Stokes equations in R3. Commun. Partial Differ. Equ. 21(1–2), 179–193 (1996)MATHCrossRef
34.
go back to reference A. Carpio, Comportement asymptotique dans les équations de Navier–Stokes. C. R. Acad. Sci. Paris Sér. I Math. 319(3), 223–228 (1994) (French, with English and French summaries). MR1288407 (95h:35174) A. Carpio, Comportement asymptotique dans les équations de Navier–Stokes. C. R. Acad. Sci. Paris Sér. I Math. 319(3), 223–228 (1994) (French, with English and French summaries). MR1288407 (95h:35174)
35.
go back to reference A. Carpio, Asymptotic behavior for the vorticity equations in dimensions two and three. Commun. Partial Differ. Equ. 19(5–6), 827–872 (1994)MathSciNetMATHCrossRef A. Carpio, Asymptotic behavior for the vorticity equations in dimensions two and three. Commun. Partial Differ. Equ. 19(5–6), 827–872 (1994)MathSciNetMATHCrossRef
36.
37.
go back to reference J. Carrillo, L. Ferreira, The asymptotic behaviour of subcritical dissipative quasi-geostrophic equations. Nonlinearity 21(5), 1001–1018 (2008)MathSciNetMATHCrossRef J. Carrillo, L. Ferreira, The asymptotic behaviour of subcritical dissipative quasi-geostrophic equations. Nonlinearity 21(5), 1001–1018 (2008)MathSciNetMATHCrossRef
38.
go back to reference J. Carrillo, L. Ferreira, Self-similar solutions and large time asymptotics for the dissipative quasi-geostrophic equation. Monatsh. Math. 151(2), 111–142 (2007)MathSciNetMATHCrossRef J. Carrillo, L. Ferreira, Self-similar solutions and large time asymptotics for the dissipative quasi-geostrophic equation. Monatsh. Math. 151(2), 111–142 (2007)MathSciNetMATHCrossRef
39.
go back to reference J. Carrillo, L. Ferreira, Convergence towards self-similar asymptotic behavior for the dissipative quasi-geostrophic equations. Self-similar solutions of nonlinear PDE, Banach Center Publications, vol. 74, Polish Academy. Science. Institute. Mathematical., Warsaw, 2006, pp. 95–115 J. Carrillo, L. Ferreira, Convergence towards self-similar asymptotic behavior for the dissipative quasi-geostrophic equations. Self-similar solutions of nonlinear PDE, Banach Center Publications, vol. 74, Polish Academy. Science. Institute. Mathematical., Warsaw, 2006, pp. 95–115
40.
go back to reference Th. Cazenave, F. Dickstein, F.B. Weissler, Chaotic behavior of solutions of the Navier–Stokes system in \(\mathbb{R}^{N}\). Adv. Differ. Equ. 10(4), 361–398 (2005)MathSciNet Th. Cazenave, F. Dickstein, F.B. Weissler, Chaotic behavior of solutions of the Navier–Stokes system in \(\mathbb{R}^{N}\). Adv. Differ. Equ. 10(4), 361–398 (2005)MathSciNet
41.
go back to reference J. Chemin, P. Zhang, Inhomogeneous incompressible Navier–Stokes flows with slowly varying initial data. arXiv (2015) J. Chemin, P. Zhang, Inhomogeneous incompressible Navier–Stokes flows with slowly varying initial data. arXiv (2015)
42.
go back to reference D. Chae, M. Schonbek, On the temporal decay for the Hall-magnetohydrodynamic equations. J. Differ. Equ. 255(11), 3971–3982 (2013)MathSciNetMATHCrossRef D. Chae, M. Schonbek, On the temporal decay for the Hall-magnetohydrodynamic equations. J. Differ. Equ. 255(11), 3971–3982 (2013)MathSciNetMATHCrossRef
43.
go back to reference J. Chemin, I. Gallagher, Wellposedness and stability results for the Navier–Stokes equations in R3. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(2), 599–624 (2009)MathSciNetMATHCrossRef J. Chemin, I. Gallagher, Wellposedness and stability results for the Navier–Stokes equations in R3. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(2), 599–624 (2009)MathSciNetMATHCrossRef
44.
go back to reference H. Choe, B. Jin, Weighted estimate of the asymptotic profiles of the Navier–Stokes flow in \(\mathbb{R}^{n}\). J. Math. Anal. Appl. 344(1), 353–366 (2008)MathSciNetMATHCrossRef H. Choe, B. Jin, Weighted estimate of the asymptotic profiles of the Navier–Stokes flow in \(\mathbb{R}^{n}\). J. Math. Anal. Appl. 344(1), 353–366 (2008)MathSciNetMATHCrossRef
45.
46.
47.
48.
go back to reference M. Dai, E. Feireisl, E. Rocca, G. Shimperna, M. Schonbek, On asymptotic isotropy for a hydro-dynamic model of liquid crystals. arXiv:1409.7499 (2014) M. Dai, E. Feireisl, E. Rocca, G. Shimperna, M. Schonbek, On asymptotic isotropy for a hydro-dynamic model of liquid crystals. arXiv:1409.7499 (2014)
49.
go back to reference M. Dai, J. Qing, M. Schonbek, Regularity of solutions to the liquid crystals systems in \(\mathbb{R}^{2}\) and \(\mathbb{R}^{3}\). Nonlinearity. 25(2), 513–532 (2012)MathSciNetMATHCrossRef M. Dai, J. Qing, M. Schonbek, Regularity of solutions to the liquid crystals systems in \(\mathbb{R}^{2}\) and \(\mathbb{R}^{3}\). Nonlinearity. 25(2), 513–532 (2012)MathSciNetMATHCrossRef
50.
go back to reference M. Dai, M. Schonbek, Asymptotic behavior of solutions to the liquid crystal system in H m (R3). SIAM J. Math. Anal. 46(5), 3131–3150 (2014)MathSciNetMATHCrossRef M. Dai, M. Schonbek, Asymptotic behavior of solutions to the liquid crystal system in H m (R3). SIAM J. Math. Anal. 46(5), 3131–3150 (2014)MathSciNetMATHCrossRef
51.
go back to reference R. Danchin, M. Paicu, Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux. Bull. Soc. Math. France 136(2), 261–309 (2008) (French, with English and French summaries)MathSciNetMATHCrossRef R. Danchin, M. Paicu, Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux. Bull. Soc. Math. France 136(2), 261–309 (2008) (French, with English and French summaries)MathSciNetMATHCrossRef
52.
go back to reference C. Doering, J.D. Gibbon, Applied Analysis of the Navier–Stokes Equations. Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 1995)  C. Doering, J.D. Gibbon, Applied Analysis of the Navier–Stokes Equations. Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 1995)
53.
go back to reference S. Dubois, What is a solution to the Navier–Stokes equations. C. R. Math. Acad. Sci. Paris 335(1), 27–32 (2002). (English, with English and French summaries) S. Dubois, What is a solution to the Navier–Stokes equations. C. R. Math. Acad. Sci. Paris 335(1), 27–32 (2002). (English, with English and French summaries)
54.
go back to reference J.L. Ericksen, Continuum theory of nematic liquid crystals. Res. Mechanica 21, 381–392 (1987) J.L. Ericksen, Continuum theory of nematic liquid crystals. Res. Mechanica 21, 381–392 (1987)
55.
56.
go back to reference R. Farwig, H. Kozono, H. Sohr, An L q -approach to Stokes and Navier–Stokes equations in general domains. Acta Math. 195, 21–53 (2005)MathSciNetMATHCrossRef R. Farwig, H. Kozono, H. Sohr, An L q -approach to Stokes and Navier–Stokes equations in general domains. Acta Math. 195, 21–53 (2005)MathSciNetMATHCrossRef
57.
go back to reference E. Feireisl, M. Schonbek, On the Oberbeck-Boussinesq approximation on unbounded domains. in Nonlinear Partial Differential Equations. Abel Symposia, vol 7 (Springer, Berlin, 2013), pp. 131–168CrossRef E. Feireisl, M. Schonbek, On the Oberbeck-Boussinesq approximation on unbounded domains. in Nonlinear Partial Differential Equations. Abel Symposia, vol 7 (Springer, Berlin, 2013), pp. 131–168CrossRef
58.
go back to reference R. Finn, On the exterior stationary problem for the Navier–Stokes equations, and associated perturbation problems. Arch. Ration. Mech. Anal. 19, 363–406 (1965). MR0182816 (32 #298) R. Finn, On the exterior stationary problem for the Navier–Stokes equations, and associated perturbation problems. Arch. Ration. Mech. Anal. 19, 363–406 (1965). MR0182816 (32 #298)
59.
go back to reference R. Finn, On the steady-state solutions of the Navier–Stokes equations. III. Acta Math. 105, 197–244 (1961). MR0166498 (29 #3773)MathSciNetMATHCrossRef R. Finn, On the steady-state solutions of the Navier–Stokes equations. III. Acta Math. 105, 197–244 (1961). MR0166498 (29 #3773)MathSciNetMATHCrossRef
60.
go back to reference R. Finn, On steady-state solutions of the Navier–Stokes partial differential equations. Arch. Ration. Mech. Anal. 3, 381–396 (1959). MR0107442 (21 #6167) R. Finn, On steady-state solutions of the Navier–Stokes partial differential equations. Arch. Ration. Mech. Anal. 3, 381–396 (1959). MR0107442 (21 #6167)
61.
go back to reference C. Foias, J.-C. Saut, Asymptotic behavior, as t → +∞, of solutions of Navier–Stokes equations and nonlinear spectral manifolds. Indiana Univ. Math. J. 33(3), 459–477 (1984)MathSciNetMATHCrossRef C. Foias, J.-C. Saut, Asymptotic behavior, as t → +, of solutions of Navier–Stokes equations and nonlinear spectral manifolds. Indiana Univ. Math. J. 33(3), 459–477 (1984)MathSciNetMATHCrossRef
62.
go back to reference Y. Fujigaki, T. Miyakawa, Asymptotic profiles of nonstationary incompressible Navier–Stokes flows in \(\mathbb{R}^{n}\) and \(\mathbb{R}^{n}\). Sūrikaisekikenkyūsho Kōkyūroku 1225, 14–33 (2001); Mathematical Analysis in Fluid and Gas Dynamics (Japanese) (Kyoto, 2000) Y. Fujigaki, T. Miyakawa, Asymptotic profiles of nonstationary incompressible Navier–Stokes flows in \(\mathbb{R}^{n}\) and \(\mathbb{R}^{n}\). Sūrikaisekikenkyūsho Kōkyūroku 1225, 14–33 (2001); Mathematical Analysis in Fluid and Gas Dynamics (Japanese) (Kyoto, 2000)
63.
go back to reference Y. Fujigaki, T. Miyakawa, Asymptotic profiles of nonstationary incompressible Navier–Stokes flows in the whole space. SIAM J. Math. Anal. 333, 523–544 (2001) Y. Fujigaki, T. Miyakawa, Asymptotic profiles of nonstationary incompressible Navier–Stokes flows in the whole space. SIAM J. Math. Anal. 333, 523–544 (2001)
64.
go back to reference Y. Fujigaki, T. Miyakawa, Asymptotic profiles of nonstationary incompressible Navier–Stokes flows in the half-space. Methods Appl. Anal. 8(1), 121–157 (2001)MathSciNetMATH Y. Fujigaki, T. Miyakawa, Asymptotic profiles of nonstationary incompressible Navier–Stokes flows in the half-space. Methods Appl. Anal. 8(1), 121–157 (2001)MathSciNetMATH
66.
go back to reference G. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I. Springer Tracts in Natural Philosophy, vol. 38 (Springer, New York, 1994). Linearized steady problems G. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I. Springer Tracts in Natural Philosophy, vol. 38 (Springer, New York, 1994). Linearized steady problems
67.
go back to reference G. Galdi, P. Maremonti, Monotonic decreasing and asymptotic behavior of the kinetic energy for weak solutions of the Navier–Stokes equations in exterior domains. Arch. Ration. Mech. Anal. 94(3), 253–266 (1986)MathSciNetMATHCrossRef G. Galdi, P. Maremonti, Monotonic decreasing and asymptotic behavior of the kinetic energy for weak solutions of the Navier–Stokes equations in exterior domains. Arch. Ration. Mech. Anal. 94(3), 253–266 (1986)MathSciNetMATHCrossRef
68.
go back to reference I. Gallagher, D. Iftimie, F. Planchon, Asymptotics and stability for global solutions to the Navier–Stokes equations. Ann. Inst. Fourier (Grenoble) 53(5), 1387–1424 (2003)MathSciNetMATHCrossRef I. Gallagher, D. Iftimie, F. Planchon, Asymptotics and stability for global solutions to the Navier–Stokes equations. Ann. Inst. Fourier (Grenoble) 53(5), 1387–1424 (2003)MathSciNetMATHCrossRef
69.
go back to reference T. Gallay, Infinite energy solutions of the two-dimensional Navier–Stokes equations (2014). arxiv:1411.5156 T. Gallay, Infinite energy solutions of the two-dimensional Navier–Stokes equations (2014). arxiv:1411.5156
70.
go back to reference T. Gallay, L. Rodrigues, Sur le temps de vie de la turbulence bidimensionnelle. Ann. Fac. Sci. Toulouse Math. (6) 17(4), 719–733 (2008) (French, with English and French summaries) T. Gallay, L. Rodrigues, Sur le temps de vie de la turbulence bidimensionnelle. Ann. Fac. Sci. Toulouse Math. (6) 17(4), 719–733 (2008) (French, with English and French summaries)
71.
go back to reference Th. Gallay, C.E. Wayne, Long-time asymptotics of the Navier–Stokes and vorticity equations on \(\mathbb{R}^{3}\). R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 360 (1799), 2155–2188 (2002); Recent Developments in the Mathematical Theory of Water Waves (Oberwolfach, 2001) Th. Gallay, C.E. Wayne, Long-time asymptotics of the Navier–Stokes and vorticity equations on \(\mathbb{R}^{3}\). R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 360 (1799), 2155–2188 (2002); Recent Developments in the Mathematical Theory of Water Waves (Oberwolfach, 2001)
72.
go back to reference Th. Gallay, Invariant manifolds and the long-time asymptotics of the Navier–Stokes and vorticity equations on \(\mathbb{R}^{2}\). Arch. Ration. Mech. Anal. 163(3), 209–258 (2002)MathSciNetMATHCrossRef Th. Gallay, Invariant manifolds and the long-time asymptotics of the Navier–Stokes and vorticity equations on \(\mathbb{R}^{2}\). Arch. Ration. Mech. Anal. 163(3), 209–258 (2002)MathSciNetMATHCrossRef
73.
go back to reference Th. Gallay, Global stability of vortex solutions of the two-dimensional Navier–Stokes equation. Commun. Math. Phys. 255(1), 97–129 (2005)MathSciNetMATHCrossRef Th. Gallay, Global stability of vortex solutions of the two-dimensional Navier–Stokes equation. Commun. Math. Phys. 255(1), 97–129 (2005)MathSciNetMATHCrossRef
74.
go back to reference J. Gao, Q. Tao, Z. Yao, Dynamics of nematic liquid crystal flows: the quasilinear approach. arXiv:1412.0498v2 (2015) J. Gao, Q. Tao, Z. Yao, Dynamics of nematic liquid crystal flows: the quasilinear approach. arXiv:1412.0498v2 (2015)
75.
go back to reference P. Germain, Multipliers, para-multipliers, and weak-strong uniqueness for the Navier–Stokes equations. J. Differ. Equ. 226(2), 373–428 (2006)MATHMathSciNetCrossRef P. Germain, Multipliers, para-multipliers, and weak-strong uniqueness for the Navier–Stokes equations. J. Differ. Equ. 226(2), 373–428 (2006)MATHMathSciNetCrossRef
76.
go back to reference P. Germain, N. Pavlović, G. Staffilani, Regularity of solutions to the Navier–Stokes equations evolving from small data in BMO−1. Int. Math. Res. Not. IMRN 21, Art. ID rnm087, 35 (2007) P. Germain, N. Pavlović, G. Staffilani, Regularity of solutions to the Navier–Stokes equations evolving from small data in BMO−1. Int. Math. Res. Not. IMRN 21, Art. ID rnm087, 35 (2007)
77.
go back to reference M-H. Giga, Y. Giga, J. Saal, Nonlinear Partial Differential Equations. Progress in Nonlinear Differential Equations and Their Applications, vol. 79 (Birkh ̈auser, Boston, 2010). Asymptotic behavior of solutions and self-similar solutionsMATHCrossRef M-H. Giga, Y. Giga, J. Saal, Nonlinear Partial Differential Equations. Progress in Nonlinear Differential Equations and Their Applications, vol. 79 (Birkh ̈auser, Boston, 2010). Asymptotic behavior of solutions and self-similar solutionsMATHCrossRef
78.
go back to reference Y. Giga, T. Kambe, Large time behavior of the vorticity of two-dimensional viscous flow and its application to vortex formation. Commun. Math. Phys. 117(4), 549–568 (1988)MathSciNetMATHCrossRef Y. Giga, T. Kambe, Large time behavior of the vorticity of two-dimensional viscous flow and its application to vortex formation. Commun. Math. Phys. 117(4), 549–568 (1988)MathSciNetMATHCrossRef
79.
go back to reference Y. Giga, S. Matsui, O. Sawada, Global existence of two-dimensional Navier–Stokes flow with nondecaying initial velocity. J. Math. Fluid Mech. 3(3), 302–315 (2001)MathSciNetMATHCrossRef Y. Giga, S. Matsui, O. Sawada, Global existence of two-dimensional Navier–Stokes flow with nondecaying initial velocity. J. Math. Fluid Mech. 3(3), 302–315 (2001)MathSciNetMATHCrossRef
80.
go back to reference Y. Giga, T. Miyakawa, Navier–Stokes flow in \(\mathbb{R}^{3}\) with measures as initial vorticity and Morrey spaces. Commun. Partial Differ. Equ. 14 (5), 577–618 (1989)MathSciNetMATHCrossRef Y. Giga, T. Miyakawa, Navier–Stokes flow in \(\mathbb{R}^{3}\) with measures as initial vorticity and Morrey spaces. Commun. Partial Differ. Equ. 14 (5), 577–618 (1989)MathSciNetMATHCrossRef
81.
go back to reference Y. Giga, T. Miyakawa, H. Osada, Two-dimensional Navier–Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal. 104(3), 223–250 (1988)MathSciNetMATHCrossRef Y. Giga, T. Miyakawa, H. Osada, Two-dimensional Navier–Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal. 104(3), 223–250 (1988)MathSciNetMATHCrossRef
82.
go back to reference P. Han, Algebraic L2decay for weak solutions of a viscous Boussinesq system in exterior domains. J. Differ. Equ. 252(12), 6306–6323 (2012)MATHCrossRef P. Han, Algebraic L2decay for weak solutions of a viscous Boussinesq system in exterior domains. J. Differ. Equ. 252(12), 6306–6323 (2012)MATHCrossRef
83.
go back to reference P. Han, M. Schonbek, Large time decay properties of solutions to a viscous Boussinesq system in a half space. Adv. Differ. Equ. 19(1–2), 87–132 (2014). MR3161657 P. Han, M. Schonbek, Large time decay properties of solutions to a viscous Boussinesq system in a half space. Adv. Differ. Equ. 19(1–2), 87–132 (2014). MR3161657
84.
go back to reference P. Han, Decay results of higher-order norms for the Navier–Stokes flows in 3D exterior domains. Commun. Math. Phys. 334(1), 397–432 (2015)MathSciNetMATHCrossRef P. Han, Decay results of higher-order norms for the Navier–Stokes flows in 3D exterior domains. Commun. Math. Phys. 334(1), 397–432 (2015)MathSciNetMATHCrossRef
85.
go back to reference C. He, T. Miyakawa, Non-stationary Navier–Stokes flows in a two-dimensional exterior domain with rotational symmetries. Indiana Univ. Math. J. 55(5), 1483–1555 (2006)MathSciNetMATHCrossRef C. He, T. Miyakawa, Non-stationary Navier–Stokes flows in a two-dimensional exterior domain with rotational symmetries. Indiana Univ. Math. J. 55(5), 1483–1555 (2006)MathSciNetMATHCrossRef
86.
go back to reference C. He, T. Miyakawa, On weighted-norm estimates for non-stationary incompressible Navier–Stokes flows in a 3D exterior domain. J. Differ. Equ. 246(6), 2355–2386 (2009)MATHCrossRef C. He, T. Miyakawa, On weighted-norm estimates for non-stationary incompressible Navier–Stokes flows in a 3D exterior domain. J. Differ. Equ. 246(6), 2355–2386 (2009)MATHCrossRef
87.
go back to reference C. He, Z. Xin, On the decay properties of solutions to the non-stationary Navier–Stokes equations in \(\mathbb{R}^{3}\). Proc. Roy Soc. Edinb. Sect. A 131(3), 597–619 (2001)MathSciNetMATHCrossRef C. He, Z. Xin, On the decay properties of solutions to the non-stationary Navier–Stokes equations in \(\mathbb{R}^{3}\). Proc. Roy Soc. Edinb. Sect. A 131(3), 597–619 (2001)MathSciNetMATHCrossRef
88.
go back to reference J. Heywood, The Navier–Stokes equations: on the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29(5), 639–681 (1980)MathSciNetMATHCrossRef J. Heywood, The Navier–Stokes equations: on the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29(5), 639–681 (1980)MathSciNetMATHCrossRef
89.
go back to reference J. Heywood, The exterior nonstationary problem for the Navier–Stokes equations. Acta Math. 129(1–2), 11–34 (1972). MR0609550 (58 #29432)MathSciNetMATHCrossRef J. Heywood, The exterior nonstationary problem for the Navier–Stokes equations. Acta Math. 129(1–2), 11–34 (1972). MR0609550 (58 #29432)MathSciNetMATHCrossRef
90.
go back to reference J. Heywood, On stationary solutions of the Navier–Stokes equations as limits of nonstationary solutions. Arch. Ration. Mech. Anal. 37, 48–60 (1970). MR0412639 (54 #761) J. Heywood, On stationary solutions of the Navier–Stokes equations as limits of nonstationary solutions. Arch. Ration. Mech. Anal. 37, 48–60 (1970). MR0412639 (54 #761)
91.
go back to reference M. Hieber, M. Nesensohn, J. Prüss, K. Schade, Dynamics of nematic liquid crystal flows: the quasilinear approach. arXiv:1302.4596v1 (2013) M. Hieber, M. Nesensohn, J. Prüss, K. Schade, Dynamics of nematic liquid crystal flows: the quasilinear approach. arXiv:1302.4596v1 (2013)
92.
go back to reference M. Hieber, J. Prüss, Thermodynamical consistent modeling and analysis of nematic liquid crystal flows. arXiv:1504.1237vi (2015) M. Hieber, J. Prüss, Thermodynamical consistent modeling and analysis of nematic liquid crystal flows. arXiv:1504.1237vi (2015)
93.
go back to reference T. Hishida, Lack of uniformity of L2 decay for viscous incompressible flows in exterior domains. Adv. Math. Sci. Appl. 2(2), 345–367 (1993) MR1239264 (94j:35144) T. Hishida, Lack of uniformity of L2 decay for viscous incompressible flows in exterior domains. Adv. Math. Sci. Appl. 2(2), 345–367 (1993) MR1239264 (94j:35144)
94.
go back to reference J. Huang, M. Paicu, Decay estimates of global solution to 2D incompressible Navier–Stokes equations with variable viscosity. Discrete Contin. Dyn. Syst. 34(11), 4647–4669 (2014)MathSciNetMATHCrossRef J. Huang, M. Paicu, Decay estimates of global solution to 2D incompressible Navier–Stokes equations with variable viscosity. Discrete Contin. Dyn. Syst. 34(11), 4647–4669 (2014)MathSciNetMATHCrossRef
95.
go back to reference N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. Commun. Math. Phys. 255(1), 161–181 (2005)MathSciNetMATHCrossRef N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. Commun. Math. Phys. 255(1), 161–181 (2005)MathSciNetMATHCrossRef
96.
97.
go back to reference G. Karch, D. Pilarczyk, Asymptotic stability of Landau solutions to Navier–Stokes system. Arch. Ration. Mech. Anal. 202(1), 115–131 (2011)MathSciNetMATHCrossRef G. Karch, D. Pilarczyk, Asymptotic stability of Landau solutions to Navier–Stokes system. Arch. Ration. Mech. Anal. 202(1), 115–131 (2011)MathSciNetMATHCrossRef
98.
go back to reference G. Karch, D. Pilarczyk, M. Schonbek, AL2-asymptotic stability of singular solutions to the Navier–Stokes system of equations in \(\mathbb{R}^{3}\). arXiv:1308.6667 G. Karch, D. Pilarczyk, M. Schonbek, AL2-asymptotic stability of singular solutions to the Navier–Stokes system of equations in \(\mathbb{R}^{3}\). arXiv:1308.6667
99.
go back to reference T. Kato, Strong L p -solutions of the Navier–Stokes equation in R m with applications to weak solutions. Math. Z. 187 (4), 471–480 (1984)MathSciNetMATHCrossRef T. Kato, Strong L p -solutions of the Navier–Stokes equation in R m with applications to weak solutions. Math. Z. 187 (4), 471–480 (1984)MathSciNetMATHCrossRef
100.
go back to reference G. Knightly, On a class of global solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 21,211–245 (1966). MR0191213 (32 #8621) G. Knightly, On a class of global solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 21,211–245 (1966). MR0191213 (32 #8621)
101.
go back to reference G. Knightly, A Cauchy problem for the Navier–Stokes equations in R n . SIAM J. Math. Anal. 3, 506–511 (1972) MR0312093 (47 #655)MathSciNetMATHCrossRef G. Knightly, A Cauchy problem for the Navier–Stokes equations in R n . SIAM J. Math. Anal. 3, 506–511 (1972) MR0312093 (47 #655)MathSciNetMATHCrossRef
102.
go back to reference G. Knightly, Some decay properties of solutions of the Navier–Stokes equations, in Approximation Methods for Navier–Stokes Problems (Proceedings of the Symposium held by the International Union of Theoretical and Applied Mechanics (IUTAM), University of Paderborn, Paderborn, 1979). Lecture Notes in Mathematics, vol. 771 (Springer, Berlin, 1980), pp. 287–298. MR566003 (81c:35104) G. Knightly, Some decay properties of solutions of the Navier–Stokes equations, in Approximation Methods for Navier–Stokes Problems (Proceedings of the Symposium held by the International Union of Theoretical and Applied Mechanics (IUTAM), University of Paderborn, Paderborn, 1979). Lecture Notes in Mathematics, vol. 771 (Springer, Berlin, 1980), pp. 287–298. MR566003 (81c:35104)
104.
go back to reference L. Kosloff, T. Schonbek, On the Laplacian and fractional Laplacian in an exterior domain. Adv. Differ. Equ. 17(1–2), 173–200 (2012) MR2906733 L. Kosloff, T. Schonbek, On the Laplacian and fractional Laplacian in an exterior domain. Adv. Differ. Equ. 17(1–2), 173–200 (2012) MR2906733
105.
go back to reference L. Kosloff, T. Schonbek, Existence and decay of solutions of the 2D QG equation in the presence of an obstacle. Discret. Contin. Dyn. Syst. Ser. S 7(5), 1025–1043 (2014)MathSciNetMATHCrossRef L. Kosloff, T. Schonbek, Existence and decay of solutions of the 2D QG equation in the presence of an obstacle. Discret. Contin. Dyn. Syst. Ser. S 7(5), 1025–1043 (2014)MathSciNetMATHCrossRef
107.
go back to reference H. Kozono, T. Ogawa, Decay properties of strong solutions for the Navier–Stokes equations in two-dimensional unbounded domains. Arch. Ration. Mech. Anal. 122(1), 1–17 (1993)MathSciNetMATHCrossRef H. Kozono, T. Ogawa, Decay properties of strong solutions for the Navier–Stokes equations in two-dimensional unbounded domains. Arch. Ration. Mech. Anal. 122(1), 1–17 (1993)MathSciNetMATHCrossRef
108.
109.
go back to reference H. Kozono, M. Yamazaki, On a larger class of stable solutions to the Navier–Stokes equations in exterior domains. Math. Z. 228(4), 751–785 (1998)MathSciNetMATHCrossRef H. Kozono, M. Yamazaki, On a larger class of stable solutions to the Navier–Stokes equations in exterior domains. Math. Z. 228(4), 751–785 (1998)MathSciNetMATHCrossRef
110.
go back to reference I. Kukavica, Space-time decay for solutions of the Navier–Stokes equations. Indiana Univ. Math. J. 50 (Special Issue), 205–222 (2001) Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000) I. Kukavica, Space-time decay for solutions of the Navier–Stokes equations. Indiana Univ. Math. J. 50 (Special Issue), 205–222 (2001) Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000)
111.
112.
go back to reference I. Kukavica, E. Reis, Asymptotic expansion for solutions of the Navier–Stokes equations with potential forces. J. Differ. Equ. 250(1), 607–622 (2011)MathSciNetMATHCrossRef I. Kukavica, E. Reis, Asymptotic expansion for solutions of the Navier–Stokes equations with potential forces. J. Differ. Equ. 250(1), 607–622 (2011)MathSciNetMATHCrossRef
113.
go back to reference I. Kukavica, J.J. Torres, Weighted L p decay for solutions of the Navier–Stokes equations. Commun. Partial Differ. Equ. 32(4–6), 819–831 (2007)MATHMathSciNetCrossRef I. Kukavica, J.J. Torres, Weighted L p decay for solutions of the Navier–Stokes equations. Commun. Partial Differ. Equ. 32(4–6), 819–831 (2007)MATHMathSciNetCrossRef
114.
go back to reference O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow. Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and Its Applications, vol. 2 (Gordon and Breach, Science Publishers, New York/London/Paris, 1969). MR0254401 (40 #7610) O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow. Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and Its Applications, vol. 2 (Gordon and Breach, Science Publishers, New York/London/Paris, 1969). MR0254401 (40 #7610)
115.
go back to reference L. Landau, A new exact solution of Navier–Stokes equations. C. R. (Dokl.) Acad. Sci. URSS (N.S.) 43, 286–288 (1944) MR0011205 (6,135d) L. Landau, A new exact solution of Navier–Stokes equations. C. R. (Dokl.) Acad. Sci. URSS (N.S.) 43, 286–288 (1944) MR0011205 (6,135d)
116.
go back to reference P. Lemarié-Rieusset, Recent Developments in the Navier–Stokes Problem. Chapman & Hall/CRC Research Notes in Mathematics, vol. 431 (Chapman & Hall/CRC, Boca Raton, 2002)MATHCrossRef P. Lemarié-Rieusset, Recent Developments in the Navier–Stokes Problem. Chapman & Hall/CRC Research Notes in Mathematics, vol. 431 (Chapman & Hall/CRC, Boca Raton, 2002)MATHCrossRef
117.
go back to reference J. Leray, Étude de diverses équations integrales non lineaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pure Appl. 9, 1–82 (1933)MATHMathSciNet J. Leray, Étude de diverses équations integrales non lineaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pure Appl. 9, 1–82 (1933)MATHMathSciNet
120.
go back to reference F. Leslie, Theory of Flow Phenomena in Liquid Crystals, vol. 4 G, Brown edn. (Academic Press,New York, 1979) F. Leslie, Theory of Flow Phenomena in Liquid Crystals, vol. 4 G, Brown edn. (Academic Press,New York, 1979)
121.
go back to reference F. Lin, C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48(5), 501–537 (1995)MathSciNetMATHCrossRef F. Lin, C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48(5), 501–537 (1995)MathSciNetMATHCrossRef
122.
go back to reference P. Lions, Mathematical Topics in Fluid Mechanics, vol. 1. Oxford Lecture Series in Mathematics and its Applications, vol. 3 (The Clarendon Press/Oxford University Press, New York, 1996). Incompressible models; Oxford Science Publications P. Lions, Mathematical Topics in Fluid Mechanics, vol. 1. Oxford Lecture Series in Mathematics and its Applications, vol. 3 (The Clarendon Press/Oxford University Press, New York, 1996). Incompressible models; Oxford Science Publications
125.
go back to reference P. Maremonti, Stabilita asintotica in media per moti fluidi viscosi in domini esterni. Anna. Mat. Pura Appl. 4(142), 57–75 (1986)MathSciNet P. Maremonti, Stabilita asintotica in media per moti fluidi viscosi in domini esterni. Anna. Mat. Pura Appl. 4(142), 57–75 (1986)MathSciNet
126.
go back to reference P. Maremonti, On the asymptotic behaviour of the L2-norm of suitable weak solutions to the Navier–Stokes equations in three-dimensional exterior domains. Commun. Math. Phys. 118(3), 385–400 (1988). MR958803 (89k:35185)MathSciNetMATHCrossRef P. Maremonti, On the asymptotic behaviour of the L2-norm of suitable weak solutions to the Navier–Stokes equations in three-dimensional exterior domains. Commun. Math. Phys. 118(3), 385–400 (1988). MR958803 (89k:35185)MathSciNetMATHCrossRef
127.
128.
go back to reference K. Masuda, Weak solutions of Navier–Stokes equations Tohoku Math. J. (2) 36(4), 623–646 (1984) K. Masuda, Weak solutions of Navier–Stokes equations Tohoku Math. J. (2) 36(4), 623–646 (1984)
129.
go back to reference Y. Meyer, Wavelets, paraproducts, and Navier–Stokes equations, in Current Developments in Mathematics (International Press, Cambridge, MA, 1996; Boston, 1997), pp. 105–212MATHCrossRef Y. Meyer, Wavelets, paraproducts, and Navier–Stokes equations, in Current Developments in Mathematics (International Press, Cambridge, MA, 1996; Boston, 1997), pp. 105–212MATHCrossRef
130.
go back to reference T. Miyakawa, Application of Hardy space techniques to the time-decay problem for incompressible Navier–Stokes flows in R n . Funkcial. Ekvac. 41(3), 383–434 (1998)MathSciNetMATH T. Miyakawa, Application of Hardy space techniques to the time-decay problem for incompressible Navier–Stokes flows in R n . Funkcial. Ekvac. 41(3), 383–434 (1998)MathSciNetMATH
131.
go back to reference T. Miyakawa, On space-time decay properties of nonstationary incompressible Navier–Stokes flows in R n . Funkcial. Ekvac. 43(3), 541–557 (2000)MathSciNetMATH T. Miyakawa, On space-time decay properties of nonstationary incompressible Navier–Stokes flows in R n . Funkcial. Ekvac. 43(3), 541–557 (2000)MathSciNetMATH
132.
go back to reference T. Miyakawa, On upper and lower bounds of rates of decay for nonstationary Navier–Stokes flows in the whole space. Hiroshima Math. J. 32(3), 431–462 (2002)MathSciNetMATH T. Miyakawa, On upper and lower bounds of rates of decay for nonstationary Navier–Stokes flows in the whole space. Hiroshima Math. J. 32(3), 431–462 (2002)MathSciNetMATH
133.
go back to reference T. Miyakawa, M.E. Schonbek, On optimal decay rates for weak solutions to the Navier–Stokes equations in \(\mathbb{R}^{n}\), in Proceedings of Partial Differential Equations and Applications (Olomouc, 1999), 2001, pp. 443–455 T. Miyakawa, M.E. Schonbek, On optimal decay rates for weak solutions to the Navier–Stokes equations in \(\mathbb{R}^{n}\), in Proceedings of Partial Differential Equations and Applications (Olomouc, 1999), 2001, pp. 443–455
134.
go back to reference Š. Nečasová, P. Rabier, On the time decay of the solutions of the Navier–Stokes system. J. Math. Fluid Mech. 9(4), 517–532 (2007)MathSciNetMATHCrossRef Š. Nečasová, P. Rabier, On the time decay of the solutions of the Navier–Stokes system. J. Math. Fluid Mech. 9(4), 517–532 (2007)MathSciNetMATHCrossRef
135.
go back to reference C. Niche, María E. Schonbek, Decay of weak solutions to the 2D dissipative quasi-geostrophic equation. Comm. Math. Phys. 276(1), 93–115 (2007)MathSciNetMATHCrossRef C. Niche, María E. Schonbek, Decay of weak solutions to the 2D dissipative quasi-geostrophic equation. Comm. Math. Phys. 276(1), 93–115 (2007)MathSciNetMATHCrossRef
136.
137.
go back to reference C. Niche, M.E. Schonbek, Comparison of decay of solutions to two compressible approximations to Navier–Stokes equations. 9 arXiv:1501 (2015) C. Niche, M.E. Schonbek, Comparison of decay of solutions to two compressible approximations to Navier–Stokes equations. 9 arXiv:1501 (2015)
138.
go back to reference T. Ogawa, S. Rajopadhye, M. Schonbek, Energy decay for a weak solution of the Navier–Stokes equation with slowly varying external forces. J. Funct. Anal. 144(2), 325–358 (1997)MathSciNetMATHCrossRef T. Ogawa, S. Rajopadhye, M. Schonbek, Energy decay for a weak solution of the Navier–Stokes equation with slowly varying external forces. J. Funct. Anal. 144(2), 325–358 (1997)MathSciNetMATHCrossRef
139.
go back to reference M. Oliver, E. Titi, Remark on the rate of decay of higher order derivatives for solutions to the Navier–Stokes equations in R n . J. Funct. Anal. 172(1), 1–18 (2000)MathSciNetMATHCrossRef M. Oliver, E. Titi, Remark on the rate of decay of higher order derivatives for solutions to the Navier–Stokes equations in R n . J. Funct. Anal. 172(1), 1–18 (2000)MathSciNetMATHCrossRef
140.
go back to reference T. Phan, N. Phuc, Stationary Navier–Stokes equations with critically singular external forces: existence and stability results. Adv. Math. 241,137–161 (2013)MathSciNetMATHCrossRef T. Phan, N. Phuc, Stationary Navier–Stokes equations with critically singular external forces: existence and stability results. Adv. Math. 241,137–161 (2013)MathSciNetMATHCrossRef
142.
go back to reference F. Planchon, Asymptotic behavior of global solutions to the Navier–Stokes equations in \(\mathbb{R}^{3}\). Rev. Mat. Iberoam. 14 1, 71–93 (1998)MathSciNetMATHCrossRef F. Planchon, Asymptotic behavior of global solutions to the Navier–Stokes equations in \(\mathbb{R}^{3}\). Rev. Mat. Iberoam. 14 1, 71–93 (1998)MathSciNetMATHCrossRef
143.
go back to reference A. Ramm, Scattering by Obstacles. Mathematics and Its Applications, vol. 21 (D. Reidel Publishing Co., Dordrecht, 1986) A. Ramm, Scattering by Obstacles. Mathematics and Its Applications, vol. 21 (D. Reidel Publishing Co., Dordrecht, 1986)
144.
go back to reference O. Sawada, Y. Taniuchi, A remark on L ∞ solutions to the 2-D Navier–Stokes equations. J. Math. Fluid Mech. 9(4), 533–542 (2007)MathSciNetMATHCrossRef O. Sawada, Y. Taniuchi, A remark on L solutions to the 2-D Navier–Stokes equations. J. Math. Fluid Mech. 9(4), 533–542 (2007)MathSciNetMATHCrossRef
146.
go back to reference M. Schonbek, L2 decay for weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 88(3), 209–222 (1985)MATHCrossRef M. Schonbek, L2 decay for weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 88(3), 209–222 (1985)MATHCrossRef
147.
go back to reference M. Schonbek, Large time behaviour of solutions to the Navier–Stokes equations. Commun. Partial Differ. Equ. 11(7), 733–763 (1986)MathSciNetMATHCrossRef M. Schonbek, Large time behaviour of solutions to the Navier–Stokes equations. Commun. Partial Differ. Equ. 11(7), 733–763 (1986)MathSciNetMATHCrossRef
148.
go back to reference M. Schonbek, Lower bounds of rates of decay for solutions to the Navier–Stokes equations. J. Am. Math. Soc. 4(3), 423–449 (1991)MathSciNetMATHCrossRef M. Schonbek, Lower bounds of rates of decay for solutions to the Navier–Stokes equations. J. Am. Math. Soc. 4(3), 423–449 (1991)MathSciNetMATHCrossRef
149.
go back to reference M. Schonbek, The Fourier splitting method, in Advances in Geometric Analysis and Continuum Mechanics (Proceedings of a conference held at Stanford University, Stanford, 1993) (International Press, Cambridge, MA, 1995), pp. 269–274 M. Schonbek, The Fourier splitting method, in Advances in Geometric Analysis and Continuum Mechanics (Proceedings of a conference held at Stanford University, Stanford, 1993) (International Press, Cambridge, MA, 1995), pp. 269–274
150.
go back to reference M. Schonbek, Large time behaviour of solutions to the Navier–Stokes equations in H m spaces. Commun. Partial Differ. Equ. 20(1–2), 103–117 (1995)MATHMathSciNetCrossRef M. Schonbek, Large time behaviour of solutions to the Navier–Stokes equations in H m spaces. Commun. Partial Differ. Equ. 20(1–2), 103–117 (1995)MATHMathSciNetCrossRef
151.
go back to reference M. Schonbek, Tomas P. Schonbek, On the boundedness and decay of moments of solutions to the Navier–Stokes equations. Adv. Differ. Equ. 5(7–9), 861–898 (2000) M. Schonbek, Tomas P. Schonbek, On the boundedness and decay of moments of solutions to the Navier–Stokes equations. Adv. Differ. Equ. 5(7–9), 861–898 (2000)
152.
go back to reference M. Schonbek, T. Schonbek, E. Süli, Large-time behaviour of solutions to the magnetohydrody-namics equations. Math. Ann. 304 (4), 717–756 (1996)MathSciNetMATHCrossRef M. Schonbek, T. Schonbek, E. Süli, Large-time behaviour of solutions to the magnetohydrody-namics equations. Math. Ann. 304 (4), 717–756 (1996)MathSciNetMATHCrossRef
153.
go back to reference M. Schonbek, T. Schonbek, Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows. Discret. Contin. Dyn. Syst. 13(5), 1277–1304 (2005)MathSciNetMATHCrossRef M. Schonbek, T. Schonbek, Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows. Discret. Contin. Dyn. Syst. 13(5), 1277–1304 (2005)MathSciNetMATHCrossRef
154.
155.
go back to reference M. Schonbek, M. Wiegner, On the decay of higher-order norms of the solutions of Navier–Stokes equations. Proc. R. Soc. Edinb. Sect. A 126(3), 677–685 (1996)MathSciNetMATHCrossRef M. Schonbek, M. Wiegner, On the decay of higher-order norms of the solutions of Navier–Stokes equations. Proc. R. Soc. Edinb. Sect. A 126(3), 677–685 (1996)MathSciNetMATHCrossRef
156.
go back to reference L. Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems. Ann. of Math. (2) 118(3), 525–571 (1983) L. Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems. Ann. of Math. (2) 118(3), 525–571 (1983)
157.
go back to reference Z. Skalák, The large-time energy concentration in solutions to the Navier–Stokes equations in the frequency space. J. Math. Anal. Appl. 400(2), 689–709 (2013)MathSciNetMATHCrossRef Z. Skalák, The large-time energy concentration in solutions to the Navier–Stokes equations in the frequency space. J. Math. Anal. Appl. 400(2), 689–709 (2013)MathSciNetMATHCrossRef
158.
go back to reference Z. Skalák, A note on lower bounds of decay rates for solutions to the Navier–Stokes equations in the norms of Besov spaces. Nonlinear Anal. 97, 228–233 (2014)MathSciNetMATHCrossRef Z. Skalák, A note on lower bounds of decay rates for solutions to the Navier–Stokes equations in the norms of Besov spaces. Nonlinear Anal. 97, 228–233 (2014)MathSciNetMATHCrossRef
159.
go back to reference Z. Skalák, On the characterization of the Navier–Stokes flows with the power-like energy decay. J. Math. Fluid Mech. 16(3), 431–446 (2014)MathSciNetMATHCrossRef Z. Skalák, On the characterization of the Navier–Stokes flows with the power-like energy decay. J. Math. Fluid Mech. 16(3), 431–446 (2014)MathSciNetMATHCrossRef
160.
go back to reference H. Sohr, The Navier–Stokes Equations. Birkhäuser Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks] (Birkhäuser Verlag, Basel, 2001). An elementary functional analytic approach H. Sohr, The Navier–Stokes Equations. Birkhäuser Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks] (Birkhäuser Verlag, Basel, 2001). An elementary functional analytic approach
162.
go back to reference S. Takahashi, A weighted equation approach to decay rate estimates for the Navier–Stokes equations. Nonlinear Anal. Ser. A: Theory Methods 37(6), 751–789 (1999)MathSciNetMATHCrossRef S. Takahashi, A weighted equation approach to decay rate estimates for the Navier–Stokes equations. Nonlinear Anal. Ser. A: Theory Methods 37(6), 751–789 (1999)MathSciNetMATHCrossRef
163.
go back to reference F. Vigneron, Spatial decay of the velocity field of an incompressible viscous fluid in \(\mathbb{R}^{d}\). Nonlinear Anal. 63 4, 525–549 (2005)MathSciNetMATHCrossRef F. Vigneron, Spatial decay of the velocity field of an incompressible viscous fluid in \(\mathbb{R}^{d}\). Nonlinear Anal. 63 4, 525–549 (2005)MathSciNetMATHCrossRef
164.
go back to reference C. Wang, Exact solutions of the Navier–Stokes equations—the generalized Beltrami flows, review and extension. Acta Mech. 81, 69–74 (1990)MathSciNetMATHCrossRef C. Wang, Exact solutions of the Navier–Stokes equations—the generalized Beltrami flows, review and extension. Acta Mech. 81, 69–74 (1990)MathSciNetMATHCrossRef
165.
go back to reference S. Weng, Remarks on asymptotic behaviors of strong solutions to a viscous Boussinesq system. arXiv:1412.8267 (2014) S. Weng, Remarks on asymptotic behaviors of strong solutions to a viscous Boussinesq system. arXiv:1412.8267 (2014)
166.
go back to reference S. Weng, Space-time decay estimates for the incompressible viscous resistive Hall-MHD equations. arXiv:1412.8267 (2014) S. Weng, Space-time decay estimates for the incompressible viscous resistive Hall-MHD equations. arXiv:1412.8267 (2014)
167.
go back to reference M. Wiegner, Decay results for weak solutions of the Navier–Stokes equations on R n . J. Lond. Math. Soc. (2) 35(2), 303–313 (1987) M. Wiegner, Decay results for weak solutions of the Navier–Stokes equations on R n . J. Lond. Math. Soc. (2) 35(2), 303–313 (1987)
168.
go back to reference H. Wu, Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discret. Contin. Dyn. Syst. 26(1), 379–396 (2010)MathSciNetMATHCrossRef H. Wu, Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discret. Contin. Dyn. Syst. 26(1), 379–396 (2010)MathSciNetMATHCrossRef
169.
go back to reference M. Yamazaki, The Navier–Stokes equations in the weak-L n space with time-dependent external force. Math. Ann. 317(4), 635–675 (2000)MathSciNetMATHCrossRef M. Yamazaki, The Navier–Stokes equations in the weak-L n space with time-dependent external force. Math. Ann. 317(4), 635–675 (2000)MathSciNetMATHCrossRef
170.
go back to reference S. Zelik, Infinite energy solutions for damped Navier–Stokes equations in \(\mathbb{R}^{2}\). J. Math. Fluid Mech. 15(4), 717–745 (2013)MathSciNetMATHCrossRef S. Zelik, Infinite energy solutions for damped Navier–Stokes equations in \(\mathbb{R}^{2}\). J. Math. Fluid Mech. 15(4), 717–745 (2013)MathSciNetMATHCrossRef
171.
go back to reference L. Zhang, Sharp rate of decay of solutions to 2-dimensional Navier–Stokes equations. Commun. Partial Differ. Equ. 20(1–2), 119–127 (1995)MathSciNetMATH L. Zhang, Sharp rate of decay of solutions to 2-dimensional Navier–Stokes equations. Commun. Partial Differ. Equ. 20(1–2), 119–127 (1995)MathSciNetMATH
Metadata
Title
Large Time Behavior of the Navier-Stokes Flow
Authors
Lorenzo Brandolese
Maria E. Schonbek
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-13344-7_11

Premium Partner