Skip to main content
Top
Published in: Lasers in Manufacturing and Materials Processing 4/2015

01-12-2015

Laser Controllable Growth of Graphene via Ni-Cu Alloy Composition Modulation

Authors: Xiaohui Ye, Zhe Lin, Hongjun Zhang, Hongwei Zhu, Minlin Zhong

Published in: Lasers in Manufacturing and Materials Processing | Issue 4/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graphene has many unique properties, most of them strongly depend on the number of layers. It is significant to develop a facile approach to realize the controllable growth of graphene with specific number of layers. We ever reported an efficient approach to grow graphene rapidly and locally by laser irradiation. In this work, we offers yet another important feature, to control the number of layers of graphene. Ni-Cu alloy has been reported to be used successfully as the catalyst for graphene growth with controllable number of layers. In that case, the Ni-Cu alloys with different compositions were normally formed by thermal evaporation. Here we provide an efficient way to fabricate the Ni-Cu alloy catalysts by laser cladding. Then the high power laser was employed to melt the Ni and Cu mixed powders. Different Ni-Cu alloy catalysts were formed in a high rate of 720 mm2/min with a thickness of 1.2 mm. Then the graphene with controllable layers was rapidly and locally grown on the Ni-Cu catalysts by laser irradiation at a high rate (18 cm2/min) at room temperature. We found that the Ni-Cu catalyst with 15 % Cu could be helpful to grow single layer graphene, which occupied 92.4 % of the entire film. Higher Cu content didn’t promote the growth due to the oxygen involved during the growth process. The controllable growth mechanism of graphene by laser processing was discussed. Combining the rapid catalyst fabrication and graphene synthesis make it a cost- and time-efficient method to produce the controllable graphene films.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef
2.
go back to reference Novoselov, K.S., Fal’Ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490, 192–200 (2012)CrossRef Novoselov, K.S., Fal’Ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490, 192–200 (2012)CrossRef
3.
go back to reference Ferrari, A.C., Basko, D.M.: Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013)CrossRef Ferrari, A.C., Basko, D.M.: Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013)CrossRef
4.
go back to reference Zang, J.F., Ryu, S., Pugno, N., Wang, Q.M., Tu, Q., Buehler, M.J., et al.: Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321–325 (2013)CrossRef Zang, J.F., Ryu, S., Pugno, N., Wang, Q.M., Tu, Q., Buehler, M.J., et al.: Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321–325 (2013)CrossRef
5.
go back to reference Neto, A.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)CrossRef Neto, A.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)CrossRef
6.
go back to reference Liu, H., Huang, J., Li, X., Liu, J., Zhang, Y., Du, K.: Flower-like SnO2/graphene composite for high-capacity lithium storage. Appl. Surf. Sci. 258, 4917–4921 (2012)CrossRef Liu, H., Huang, J., Li, X., Liu, J., Zhang, Y., Du, K.: Flower-like SnO2/graphene composite for high-capacity lithium storage. Appl. Surf. Sci. 258, 4917–4921 (2012)CrossRef
7.
go back to reference Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., et al.: Large-scale pattern growth of graphene films for stretchable transpatent electrodes. Nature 457, 706–710 (2009)CrossRef Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., et al.: Large-scale pattern growth of graphene films for stretchable transpatent electrodes. Nature 457, 706–710 (2009)CrossRef
8.
go back to reference Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., et al.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)CrossRef Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., et al.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)CrossRef
9.
go back to reference Chen, S.S., Brown, L., Levendorf, M., Cai, W.W., Ju, S.Y., Edgeworth, J., et al.: Oxidation resistance of graphene-coated Cu and CuNi alloy. ACS Nano 5, 1321–1327 (2011)CrossRef Chen, S.S., Brown, L., Levendorf, M., Cai, W.W., Ju, S.Y., Edgeworth, J., et al.: Oxidation resistance of graphene-coated Cu and CuNi alloy. ACS Nano 5, 1321–1327 (2011)CrossRef
10.
go back to reference Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., et al.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)CrossRef Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., et al.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)CrossRef
11.
go back to reference Ni, Z., Wang, Y., Yu, T., Shen, Z.: Raman spectroscopy and imaging of graphene. Nano Res. 1, 273–291 (2008)CrossRef Ni, Z., Wang, Y., Yu, T., Shen, Z.: Raman spectroscopy and imaging of graphene. Nano Res. 1, 273–291 (2008)CrossRef
12.
go back to reference Casiraghi, C., Hartschuh, A., Lidorikis, E., Qian, H., Harutyunyan, H., Gokus, T., et al.: Rayleigh imaging of graphene and graphene layers. Nano Lett. 7, 2711–2717 (2007)CrossRef Casiraghi, C., Hartschuh, A., Lidorikis, E., Qian, H., Harutyunyan, H., Gokus, T., et al.: Rayleigh imaging of graphene and graphene layers. Nano Lett. 7, 2711–2717 (2007)CrossRef
13.
go back to reference Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., et al.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)CrossRef Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., et al.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)CrossRef
14.
go back to reference Chen, S., Cai, W., Piner, R.D., Suk, J.W., Wu, Y., Ren, Y., et al.: Synthesis and characterization of large-area graphene and graphite films on commercial Cu–Ni alloy foils. Nano Lett. 11, 3519–3525 (2011)CrossRef Chen, S., Cai, W., Piner, R.D., Suk, J.W., Wu, Y., Ren, Y., et al.: Synthesis and characterization of large-area graphene and graphite films on commercial Cu–Ni alloy foils. Nano Lett. 11, 3519–3525 (2011)CrossRef
15.
go back to reference Liu, X., Fu, L., Liu, N., Gao, T., Zhang, Y., Liao, L., Liu, Z.: Segregation growth of graphene on Cu-Ni alloy for precise layer control. J. Phys. Chem. C 115, 11976–11982 (2011)CrossRef Liu, X., Fu, L., Liu, N., Gao, T., Zhang, Y., Liao, L., Liu, Z.: Segregation growth of graphene on Cu-Ni alloy for precise layer control. J. Phys. Chem. C 115, 11976–11982 (2011)CrossRef
16.
go back to reference Zhang, Y., Tang, T.T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., et al.: Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009)CrossRef Zhang, Y., Tang, T.T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., et al.: Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009)CrossRef
17.
go back to reference Partoens, B., Peeters, F.M.: From graphene to graphite: electronic structure around the K point. Phys. Rev. B 74, 075404 (2006)CrossRef Partoens, B., Peeters, F.M.: From graphene to graphite: electronic structure around the K point. Phys. Rev. B 74, 075404 (2006)CrossRef
18.
go back to reference Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E.: Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006)CrossRef Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E.: Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006)CrossRef
19.
go back to reference Craciun, M.F., Russo, S., Yamamoto, M., Oostinga, J.B., Morpurgo, A.F., Tarucha, S.: Trilayer graphene is a semimetal with a gate-tunable band overlap. Nat. Nanotechnol. 4, 383–388 (2009)CrossRef Craciun, M.F., Russo, S., Yamamoto, M., Oostinga, J.B., Morpurgo, A.F., Tarucha, S.: Trilayer graphene is a semimetal with a gate-tunable band overlap. Nat. Nanotechnol. 4, 383–388 (2009)CrossRef
20.
go back to reference Liu, N., Fu, L., Dai, B., Yan, K., Liu, X., Zhao, R., et al.: Universal segregation growth approach to wafer-size graphene from non-noble metals. Nano Lett. 11, 297–303 (2010)CrossRef Liu, N., Fu, L., Dai, B., Yan, K., Liu, X., Zhao, R., et al.: Universal segregation growth approach to wafer-size graphene from non-noble metals. Nano Lett. 11, 297–303 (2010)CrossRef
21.
go back to reference Dai, B., Fu, L., Zou, Z., Wang, M., Xu, H., Wang, S., Liu, Z.: Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat. Commun. 2, 522 (2011)CrossRef Dai, B., Fu, L., Zou, Z., Wang, M., Xu, H., Wang, S., Liu, Z.: Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat. Commun. 2, 522 (2011)CrossRef
22.
go back to reference Weatherup, R.S., Bayer, B.C.: In situ characterization of alloy catalysts for low-temperature graphene growth. Nano Lett. 11, 4154–4160 (2011)CrossRef Weatherup, R.S., Bayer, B.C.: In situ characterization of alloy catalysts for low-temperature graphene growth. Nano Lett. 11, 4154–4160 (2011)CrossRef
23.
go back to reference Ye, X., Long, J., Lin, Z., Zhang, H., Zhu, H., Zhong, M.: Direct laser fabrication of large-area and patterned graphene at room temperature. Carbon 68, 784–790 (2014)CrossRef Ye, X., Long, J., Lin, Z., Zhang, H., Zhu, H., Zhong, M.: Direct laser fabrication of large-area and patterned graphene at room temperature. Carbon 68, 784–790 (2014)CrossRef
24.
go back to reference Li, X., Cai, W., Colombo, L., Ruoff, R.S.: Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268–4272 (2009)CrossRef Li, X., Cai, W., Colombo, L., Ruoff, R.S.: Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268–4272 (2009)CrossRef
26.
go back to reference Gao, W., Zhao, S., Liu, F., Wang, Y., Zhou, C., Lin, X.: Effect of defocus manner on laser cladding of Fe-based alloy powder. Surf. Coat. Tech. 248, 54–62 (2014)CrossRef Gao, W., Zhao, S., Liu, F., Wang, Y., Zhou, C., Lin, X.: Effect of defocus manner on laser cladding of Fe-based alloy powder. Surf. Coat. Tech. 248, 54–62 (2014)CrossRef
27.
go back to reference Zang, Z., Nakamura, A., Temmyo, J.: Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application. Opt. Express 21, 11448–11456 (2013)CrossRef Zang, Z., Nakamura, A., Temmyo, J.: Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application. Opt. Express 21, 11448–11456 (2013)CrossRef
28.
go back to reference Chen, H., Zhu, W., Zhang, Z.: Contrasting behavior of carbon nucleation in the initial stages of graphene epitaxial growth on stepped metal surfaces. Phys. Rev. Lett. 104, 186101 (2010)CrossRef Chen, H., Zhu, W., Zhang, Z.: Contrasting behavior of carbon nucleation in the initial stages of graphene epitaxial growth on stepped metal surfaces. Phys. Rev. Lett. 104, 186101 (2010)CrossRef
29.
go back to reference Wood, J.D., Schmucker, S.W., Lyons, A.S., Pop, E., Lyding, J.W.: Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 11, 4547–4554 (2011)CrossRef Wood, J.D., Schmucker, S.W., Lyons, A.S., Pop, E., Lyding, J.W.: Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 11, 4547–4554 (2011)CrossRef
30.
go back to reference Zhang, Y., Gomez, L., Ishikawa, F.N., Madaria, A., Ryu, K., Wang, C., et al.: Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition. J. Phys. Chem. Lett. 1, 3101–3107 (2010)CrossRef Zhang, Y., Gomez, L., Ishikawa, F.N., Madaria, A., Ryu, K., Wang, C., et al.: Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition. J. Phys. Chem. Lett. 1, 3101–3107 (2010)CrossRef
31.
go back to reference Li, Y., Li, M., Gu, T., Bai, F., Yu, Y., Trevor, M., Yu, Y.: An important atomic process in the CVD growth of graphene Sinking and up-floating of carbon atom on copper surface. Appl. Surf. Sci. 284, 207–213 (2013)CrossRef Li, Y., Li, M., Gu, T., Bai, F., Yu, Y., Trevor, M., Yu, Y.: An important atomic process in the CVD growth of graphene Sinking and up-floating of carbon atom on copper surface. Appl. Surf. Sci. 284, 207–213 (2013)CrossRef
Metadata
Title
Laser Controllable Growth of Graphene via Ni-Cu Alloy Composition Modulation
Authors
Xiaohui Ye
Zhe Lin
Hongjun Zhang
Hongwei Zhu
Minlin Zhong
Publication date
01-12-2015
Publisher
Springer US
Published in
Lasers in Manufacturing and Materials Processing / Issue 4/2015
Print ISSN: 2196-7229
Electronic ISSN: 2196-7237
DOI
https://doi.org/10.1007/s40516-015-0016-1

Other articles of this Issue 4/2015

Lasers in Manufacturing and Materials Processing 4/2015 Go to the issue

Premium Partners