Skip to main content
Top
Published in: Artificial Life and Robotics 2/2014

01-09-2014 | Original Article

Learning to navigate in a virtual world using optic flow and stereo disparity signals

Authors: Florian Raudies, Schuyler Eldridge, Ajay Joshi, Massimiliano Versace

Published in: Artificial Life and Robotics | Issue 2/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Navigating in a complex world is challenging in that the rich, real environment provides a very large number of sensory states that can immediately precede a collision. Biological organisms such as rodents are able to solve this problem, effortlessly navigating in closed spaces by encoding in neural representations distance toward walls or obstacles for a given direction. This paper presents a method that can be used by virtual (simulated) or robotic agents, which uses states similar to neural representations to learn collision avoidance. Unlike other approaches, our reinforcement learning approach uses a small number of states defined by discretized distances along three constant directions. These distances are estimated either from optic flow or binocular stereo information. Parameterized templates for optic flow or disparity information are compared against the input flow or input disparity to estimate these distances. Simulations in a virtual environment show learning of collision avoidance. Our results show that learning with only stereo information is superior to learning with only optic flow information. Our work motivates the usage of abstract state descriptions for the learning of visual navigation. Future work will focus on the fusion of optic flow and stereo information, and transferring these models to robotic platforms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Adiv G (1985) Determining three-dimensional motion and structure from optical flow generated by several moving objects. IEEE Trans Pattern Anal Mach Intell PAMI–7(4):384–401CrossRef Adiv G (1985) Determining three-dimensional motion and structure from optical flow generated by several moving objects. IEEE Trans Pattern Anal Mach Intell PAMI–7(4):384–401CrossRef
2.
go back to reference Adorni G, Cagnoni S, Enderle S, Kraetzschmar GK, Mordonini M, Plagge M, Ritter M, Sablatng S, Zell A (2001) Vision-based localization for mobile robots. Robot Auton Syst 36:103–119CrossRefMATH Adorni G, Cagnoni S, Enderle S, Kraetzschmar GK, Mordonini M, Plagge M, Ritter M, Sablatng S, Zell A (2001) Vision-based localization for mobile robots. Robot Auton Syst 36:103–119CrossRefMATH
3.
go back to reference Baker S, Scharstein D, Lewis JP, Roth S, Black MJ, Szeliski R (2011) A database and evaluation methodology for optical flow. Int J Comput Vis 92(1):1–31CrossRef Baker S, Scharstein D, Lewis JP, Roth S, Black MJ, Szeliski R (2011) A database and evaluation methodology for optical flow. Int J Comput Vis 92(1):1–31CrossRef
4.
go back to reference Baird LC (1995) Residual algorithms: Reinforcement learning with function approximation. In: Prieditis A, Russell S (eds) Proceedings of the twelfth international conference on machine learning. Morgan Kaufmann, San Francisco, pp 30–37 Baird LC (1995) Residual algorithms: Reinforcement learning with function approximation. In: Prieditis A, Russell S (eds) Proceedings of the twelfth international conference on machine learning. Morgan Kaufmann, San Francisco, pp 30–37
5.
go back to reference Barron J, Fleet D, Beauchemin S (1994) Performance of optical flow techniques. Int J Comput Vis 12(1):43–77CrossRef Barron J, Fleet D, Beauchemin S (1994) Performance of optical flow techniques. Int J Comput Vis 12(1):43–77CrossRef
6.
go back to reference Bonin-Font F, Ortiz A, Oliver G (2008) Visual navigation for mobile robots: a survey. J Intell Robot Syst 53:263–296CrossRef Bonin-Font F, Ortiz A, Oliver G (2008) Visual navigation for mobile robots: a survey. J Intell Robot Syst 53:263–296CrossRef
7.
go back to reference Cumming BG, DeAngelis GC (2001) The physiology of stereopsis. Annu Rev Neurosci 24:203–238CrossRef Cumming BG, DeAngelis GC (2001) The physiology of stereopsis. Annu Rev Neurosci 24:203–238CrossRef
8.
go back to reference DeSouza GN, Kak AC (2002) Vision for mobile robot navigation: a survey. IEEE Trans Pattern Anal Mach Intell 24(2):237–269CrossRef DeSouza GN, Kak AC (2002) Vision for mobile robot navigation: a survey. IEEE Trans Pattern Anal Mach Intell 24(2):237–269CrossRef
9.
go back to reference Dev A, Krose B, Groen F (1997) Navigation of mobile robot on the temporal development of the optic flow. Proc Intell Robots Syst (IROS) 2:558–563 Dev A, Krose B, Groen F (1997) Navigation of mobile robot on the temporal development of the optic flow. Proc Intell Robots Syst (IROS) 2:558–563
10.
go back to reference Duda RO, Hart PE (1972) Use of the Hough transformation to detect lines and curves in pictures. Commun ACM 15(1):11–15CrossRef Duda RO, Hart PE (1972) Use of the Hough transformation to detect lines and curves in pictures. Commun ACM 15(1):11–15CrossRef
11.
go back to reference Franz MO, Schlkopf B, Mallot HA, Blthoff H (1998) Learning view graphs for robot navigation. Auton Robots 5:111–125CrossRef Franz MO, Schlkopf B, Mallot HA, Blthoff H (1998) Learning view graphs for robot navigation. Auton Robots 5:111–125CrossRef
12.
go back to reference Gaskett C, Fletcher L, Zelinsky (2000) A Reinforcement learning for a vision based mobile robot. In: Proceedings of the IEEE conference on intelligent robots and systems (IROS), pp 403–409 Gaskett C, Fletcher L, Zelinsky (2000) A Reinforcement learning for a vision based mobile robot. In: Proceedings of the IEEE conference on intelligent robots and systems (IROS), pp 403–409
13.
go back to reference Huang B-Q, Cao G-Y Guo M (2005) Reinforcement learning neural network to the problem of autonomous mobile robot obstacle avoidance. In: Proceedings of the 4th international conference on machine learning and cybernetics, pp 85–89 Huang B-Q, Cao G-Y Guo M (2005) Reinforcement learning neural network to the problem of autonomous mobile robot obstacle avoidance. In: Proceedings of the 4th international conference on machine learning and cybernetics, pp 85–89
14.
go back to reference Kim D, Sun J, Oh SM, Rehg JM, Bobick AF (2006) Traversibility classification using unsupervised on-line visual learning for outdoor robot navigation. In: Proceedings of IEEE international conference on robotics and automation, Orlando, Florida, pp 518–525 Kim D, Sun J, Oh SM, Rehg JM, Bobick AF (2006) Traversibility classification using unsupervised on-line visual learning for outdoor robot navigation. In: Proceedings of IEEE international conference on robotics and automation, Orlando, Florida, pp 518–525
15.
go back to reference Lemaire T, Berger C, Jung I-K, Lacroix S (2007) Vison-based SLAM: stereo and monocular approaches. Int J Comput Vis 74(3):343–364CrossRef Lemaire T, Berger C, Jung I-K, Lacroix S (2007) Vison-based SLAM: stereo and monocular approaches. Int J Comput Vis 74(3):343–364CrossRef
16.
go back to reference Longuet-Higgins HC, Prazdny K (1980) The interpretation of a moving retinal image. Proc R Soc Lond Ser B Biol Sci 208:385–397CrossRef Longuet-Higgins HC, Prazdny K (1980) The interpretation of a moving retinal image. Proc R Soc Lond Ser B Biol Sci 208:385–397CrossRef
17.
go back to reference Lever C, Burton S, Jeewajee A, O’Keefe J, Burgess N (2009) Boundary vector cells in the subiculum of the hippocampal formation. J Neurosci 29(31):9771–9777CrossRef Lever C, Burton S, Jeewajee A, O’Keefe J, Burgess N (2009) Boundary vector cells in the subiculum of the hippocampal formation. J Neurosci 29(31):9771–9777CrossRef
18.
go back to reference Marinez-Marin T, Duckett T (2005) Fast reinforcement learning for vision-guided mobile robots. In: Proceedings of the IEEE conference on robotics and automation (IROS), Spain, pp 4170–4175 Marinez-Marin T, Duckett T (2005) Fast reinforcement learning for vision-guided mobile robots. In: Proceedings of the IEEE conference on robotics and automation (IROS), Spain, pp 4170–4175
19.
go back to reference Michels J, Saxena A, Ng AY (2005) High speed obstacle avoidance using monocular vision and reinforcement learning. In: Proceedings of 22nd international conference on machine learning, Bonn, Germany, pp 593–600 Michels J, Saxena A, Ng AY (2005) High speed obstacle avoidance using monocular vision and reinforcement learning. In: Proceedings of 22nd international conference on machine learning, Bonn, Germany, pp 593–600
20.
go back to reference Millan JR (1995) Reinforcement learning of goal-directed obstacle-avoiding reaction strategies in an autonomous mobile robot. Robot Auton Syst 15:275–299CrossRef Millan JR (1995) Reinforcement learning of goal-directed obstacle-avoiding reaction strategies in an autonomous mobile robot. Robot Auton Syst 15:275–299CrossRef
21.
go back to reference Prescott TJ, Mayhew JEW (1992) Obstacle avoidance through reinforcement learning. In: Moody JE, Hanson SJ, Lippman RP (eds) Advances in neural information processing systems 4. Morgan Kaufmann, San Mateo, pp 523–530 Prescott TJ, Mayhew JEW (1992) Obstacle avoidance through reinforcement learning. In: Moody JE, Hanson SJ, Lippman RP (eds) Advances in neural information processing systems 4. Morgan Kaufmann, San Mateo, pp 523–530
22.
go back to reference Ohya A, Kosaka A, Kak A (1998) Vision-based navigation by a mobile robot with obstacle avoidance using single-camera vision and ultrasonic sensing. Robot Autom 14(6):969–978CrossRef Ohya A, Kosaka A, Kak A (1998) Vision-based navigation by a mobile robot with obstacle avoidance using single-camera vision and ultrasonic sensing. Robot Autom 14(6):969–978CrossRef
23.
go back to reference Pack CC, Born RT (2008) Cortical mechanisms for the integration of visual motion. In: Masland RH, Albright T (eds) The senses: a comprehensive reference, vol 2, pp 189–218 Pack CC, Born RT (2008) Cortical mechanisms for the integration of visual motion. In: Masland RH, Albright T (eds) The senses: a comprehensive reference, vol 2, pp 189–218
24.
25.
go back to reference Perrone J, Stone L (1994) A model of self-motion estimation within primate extrastriate visual cortex. Vis Res 34(21):2917–2938CrossRef Perrone J, Stone L (1994) A model of self-motion estimation within primate extrastriate visual cortex. Vis Res 34(21):2917–2938CrossRef
26.
go back to reference Santos-Victor J, Sandini G, Curotto F, Garibaldi S (1993) Divergence stereo for robot navigation: Learning from bees. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 434–439 Santos-Victor J, Sandini G, Curotto F, Garibaldi S (1993) Divergence stereo for robot navigation: Learning from bees. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 434–439
27.
go back to reference Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vis 47(1/2/3):7–42CrossRefMATH Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vis 47(1/2/3):7–42CrossRefMATH
28.
go back to reference Shirley P, Marschner S (2009) Fundamentals of computer graphics, 3rd edn. A K Peters Natick, Massachusetts Shirley P, Marschner S (2009) Fundamentals of computer graphics, 3rd edn. A K Peters Natick, Massachusetts
29.
go back to reference Solstad T, Boccara CN, Kropff E, Moser M-B, Moser EI (2008) Representation of geometric borders in the entorhinal cortex. Science 332:1865–1868CrossRef Solstad T, Boccara CN, Kropff E, Moser M-B, Moser EI (2008) Representation of geometric borders in the entorhinal cortex. Science 332:1865–1868CrossRef
30.
go back to reference Strsslin T, Sheynikhovich D, Chavarriaga R, Gerstner W (2003) Robust self-localization and navigation based on hippocampal place cells. Neural Netw 18:1125–1140CrossRef Strsslin T, Sheynikhovich D, Chavarriaga R, Gerstner W (2003) Robust self-localization and navigation based on hippocampal place cells. Neural Netw 18:1125–1140CrossRef
31.
go back to reference Sutton RS (1996) Generalization in reinforcement learning: successful examples using sparse coarse coding. In: Touretzky DS, Mozer MC, Hasselmo ME (eds) Advances in neural information processing systems: proceedings of the 1995 conference. MIT Press, Cambridge, pp 1038–1044 Sutton RS (1996) Generalization in reinforcement learning: successful examples using sparse coarse coding. In: Touretzky DS, Mozer MC, Hasselmo ME (eds) Advances in neural information processing systems: proceedings of the 1995 conference. MIT Press, Cambridge, pp 1038–1044
32.
go back to reference Sutton RS, Barto AG (1998) Reinforcement Learning—an Introduction. MIT Press, Cambridge Sutton RS, Barto AG (1998) Reinforcement Learning—an Introduction. MIT Press, Cambridge
33.
go back to reference Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn 8:279–292MATH Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn 8:279–292MATH
34.
go back to reference Waxman A, Duncan JH (1986) Binocular image flows: steps toward stereo-motion fusion. IEEE Trans Pattern Recognit Mach Intell PAMI–8(6):715–729CrossRef Waxman A, Duncan JH (1986) Binocular image flows: steps toward stereo-motion fusion. IEEE Trans Pattern Recognit Mach Intell PAMI–8(6):715–729CrossRef
35.
go back to reference Yue S, Rind C, Keil M, Cuadri J, Stafford R (2006) A bio-inspired visual collision detection mechanism for cars: optimisation of a model of a locust neuron to a novel environment. Neurocomputing 69:1591–1598CrossRef Yue S, Rind C, Keil M, Cuadri J, Stafford R (2006) A bio-inspired visual collision detection mechanism for cars: optimisation of a model of a locust neuron to a novel environment. Neurocomputing 69:1591–1598CrossRef
36.
go back to reference Zhu W, Levinson S (2001) Vision-based reinforcement learning for robot navigation. In: Proceedings of international joint conference on neural networks, Washington DC, pp 1025–1030 Zhu W, Levinson S (2001) Vision-based reinforcement learning for robot navigation. In: Proceedings of international joint conference on neural networks, Washington DC, pp 1025–1030
Metadata
Title
Learning to navigate in a virtual world using optic flow and stereo disparity signals
Authors
Florian Raudies
Schuyler Eldridge
Ajay Joshi
Massimiliano Versace
Publication date
01-09-2014
Publisher
Springer Japan
Published in
Artificial Life and Robotics / Issue 2/2014
Print ISSN: 1433-5298
Electronic ISSN: 1614-7456
DOI
https://doi.org/10.1007/s10015-014-0153-1

Other articles of this Issue 2/2014

Artificial Life and Robotics 2/2014 Go to the issue