Skip to main content
Top

2017 | OriginalPaper | Chapter

Learning with Ambiguous Label Distribution for Apparent Age Estimation

Authors : Ke Chen, Joni-Kristian Kämäräinen

Published in: Computer Vision – ACCV 2016

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Annotating age classes for humans’ facial images according to their appearance is very challenging because of dynamic person-specific ageing pattern, and thus leads to a set of unreliable apparent age labels for each image. For utilising ambiguous label annotations, an intuitive strategy is to generate a pseudo age for each image, typically the average value of manually-annotated age annotations, which is thus fed into standard supervised learning frameworks designed for chronological age estimation. Alternatively, inspired by the recent success of label distribution learning, this paper introduces a novel concept of ambiguous label distribution for apparent age estimation, which is developed under the following observations that (1) soft labelling is beneficial for alleviating the suffering of inaccurate annotations and (2) more reliable annotations should contribute more. To achieve the goal, label distributions of sparse age annotations for each image are weighted according to their reliableness and then combined to construct an ambiguous label distribution. In the light, the proposed learning framework not only inherits the advantages from conventional learning with label distribution to capture latent label correlation but also exploits annotation reliableness to improve the robustness against inconsistent age annotations. Experimental evaluation on the FG-NET age estimation benchmark verifies its effectiveness and superior performance over the state-of-the-art frameworks for apparent age estimation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Following the usage in Matlab, the notation [x : y : z] represents an array starting from x to z with the step of y.
 
Literature
1.
go back to reference Chen, K., Gong, S., Xiang, T., Loy, C.C.: Cumulative attribute space for age and crowd density estimation. In: CVPR (2013) Chen, K., Gong, S., Xiang, T., Loy, C.C.: Cumulative attribute space for age and crowd density estimation. In: CVPR (2013)
2.
go back to reference Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: a survey. TPAMI 32(11), 1955–1976 (2010)CrossRef Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: a survey. TPAMI 32(11), 1955–1976 (2010)CrossRef
3.
go back to reference Geng, X., Ji, R.: Label distribution learning. In: ICDMW (2013) Geng, X., Ji, R.: Label distribution learning. In: ICDMW (2013)
4.
go back to reference Geng, X., Yin, C., Zhou, Z.H.: Facial age estimation by learning from label distributions. TPAMI 35(10), 2401–2412 (2014)CrossRef Geng, X., Yin, C., Zhou, Z.H.: Facial age estimation by learning from label distributions. TPAMI 35(10), 2401–2412 (2014)CrossRef
5.
go back to reference Luu, K., Ricanek Jr., K., Bui, T.D., Suen, C.Y.: Age estimation using active appearance models and support vector machine regression. In: BTAS (2009) Luu, K., Ricanek Jr., K., Bui, T.D., Suen, C.Y.: Age estimation using active appearance models and support vector machine regression. In: BTAS (2009)
6.
go back to reference Pontes, J.K., Britto, A.S., Fookes, C., Koerich, A.L.: A flexible hierarchical approach for facial age estimation based on multiple features. Pattern Recogn. 54, 34–51 (2015)CrossRef Pontes, J.K., Britto, A.S., Fookes, C., Koerich, A.L.: A flexible hierarchical approach for facial age estimation based on multiple features. Pattern Recogn. 54, 34–51 (2015)CrossRef
7.
go back to reference Zhang, Y., Yeung, D.: Multi-tasks warped Gaussian process for personalized age estimation. In: CVPR (2010) Zhang, Y., Yeung, D.: Multi-tasks warped Gaussian process for personalized age estimation. In: CVPR (2010)
8.
go back to reference Han, H., Otto, C., Liu, X., Jain, A.K.: Demographic estimation from face images: human vs. machine performance. TPAMI 37(6), 1148–1161 (2015)CrossRef Han, H., Otto, C., Liu, X., Jain, A.K.: Demographic estimation from face images: human vs. machine performance. TPAMI 37(6), 1148–1161 (2015)CrossRef
9.
go back to reference Yang, X., Gao, B.B., Xing, C., Huo, Z.W., Wei, X.S., Zhou, Y., Wu, J., Geng, X.: Deep label distribution learning for apparent age estimation. In: CVPR Workshops (2015) Yang, X., Gao, B.B., Xing, C., Huo, Z.W., Wei, X.S., Zhou, Y., Wu, J., Geng, X.: Deep label distribution learning for apparent age estimation. In: CVPR Workshops (2015)
10.
go back to reference Rothe, R., Timofte, R., Gool, L.: DEX: deep expectation of apparent age from a single image. In: ICCV Workshops (2015) Rothe, R., Timofte, R., Gool, L.: DEX: deep expectation of apparent age from a single image. In: ICCV Workshops (2015)
11.
go back to reference Kuang, Z., Huang, C., Zhang, W.: Deeply learned rich coding for cross-dataset facial age estimation. In: ICCV Workshops (2015) Kuang, Z., Huang, C., Zhang, W.: Deeply learned rich coding for cross-dataset facial age estimation. In: ICCV Workshops (2015)
12.
go back to reference Zhu, Y., Li, Y., Mu, G., Guo, G.: A study on apparent age estimation. In: ICCV Workshops (2015) Zhu, Y., Li, Y., Mu, G., Guo, G.: A study on apparent age estimation. In: ICCV Workshops (2015)
13.
go back to reference Antipov, G., Baccouche, M., Berrani, S.A., Dugelay, J.L.: Apparent age estimation from face images combining general and children-specialized deep learning models. In: ICCV Workshops (2015) Antipov, G., Baccouche, M., Berrani, S.A., Dugelay, J.L.: Apparent age estimation from face images combining general and children-specialized deep learning models. In: ICCV Workshops (2015)
14.
go back to reference Geng, X., Zhou, Z.H., Smith-Miles, K.: Automatic age estimation based on facial aging patterns. TPAMI 29(12), 2234–2240 (2007)CrossRef Geng, X., Zhou, Z.H., Smith-Miles, K.: Automatic age estimation based on facial aging patterns. TPAMI 29(12), 2234–2240 (2007)CrossRef
15.
go back to reference Lanitis, A., Draganova, C., Christodoulou, C.: Comparing different classifiers for automatic age estimation. TSMC 34(1), 621–628 (2004) Lanitis, A., Draganova, C., Christodoulou, C.: Comparing different classifiers for automatic age estimation. TSMC 34(1), 621–628 (2004)
16.
go back to reference Geng, X., Wang, Q., Xia, Y.: Facial age estimation by adaptive label distribution learning. In: ICPR (2014) Geng, X., Wang, Q., Xia, Y.: Facial age estimation by adaptive label distribution learning. In: ICPR (2014)
17.
go back to reference Guo, G., Fu, Y., Huang, T.S., Dyer, C.R.: Image-based human age estimation by manifold learning and locally adjusted robust regression. TIP 17(7), 1178–1188 (2008)MathSciNet Guo, G., Fu, Y., Huang, T.S., Dyer, C.R.: Image-based human age estimation by manifold learning and locally adjusted robust regression. TIP 17(7), 1178–1188 (2008)MathSciNet
18.
go back to reference Guo, G., Mu, G., Fu, Y., Huang, T.S.: Human age estimation using bio-inspired features. In: CVPR (2009) Guo, G., Mu, G., Fu, Y., Huang, T.S.: Human age estimation using bio-inspired features. In: CVPR (2009)
19.
go back to reference Chang, K.Y., Chen, C.S., Hung, Y.P.: Ordinal hyperplanes ranker with cost sensitivities for age estimation. In: CVPR (2011) Chang, K.Y., Chen, C.S., Hung, Y.P.: Ordinal hyperplanes ranker with cost sensitivities for age estimation. In: CVPR (2011)
20.
go back to reference Wang, S., Tao, D., Yang, J.: Relative attribute SVM+ learning for age estimation. TC 46(3), 827–839 (2015) Wang, S., Tao, D., Yang, J.: Relative attribute SVM+ learning for age estimation. TC 46(3), 827–839 (2015)
21.
go back to reference Zhang, M.L., Yu, F.: Solving the partial label learning problem: an instance-based approach. In: IJCAI (2015) Zhang, M.L., Yu, F.: Solving the partial label learning problem: an instance-based approach. In: IJCAI (2015)
22.
23.
go back to reference Cour, T., Sapp, B., Jordan, C., Taskar, B.: Learning from ambiguously labeled images. In: CVPR (2009) Cour, T., Sapp, B., Jordan, C., Taskar, B.: Learning from ambiguously labeled images. In: CVPR (2009)
24.
go back to reference Escalera, S., Fabian, J., Pardo, P., Baro, X., Gonzalez, J., Escalante, H., Guyon, I.: ChaLearn 2015 apparent age and cultural event recognition: datasets and results. In: ICCV, ChaLearn Looking at People Workshop (2015) Escalera, S., Fabian, J., Pardo, P., Baro, X., Gonzalez, J., Escalante, H., Guyon, I.: ChaLearn 2015 apparent age and cultural event recognition: datasets and results. In: ICCV, ChaLearn Looking at People Workshop (2015)
25.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)
26.
go back to reference MacKay, D.J.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)MATH MacKay, D.J.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)MATH
27.
go back to reference Berger, A.L., Pietra, V.J.D., Pietra, S.A.D.: A maximum entropy approach to natural language processing. Comput. Linguist. 22(1), 39–71 (1996) Berger, A.L., Pietra, V.J.D., Pietra, S.A.D.: A maximum entropy approach to natural language processing. Comput. Linguist. 22(1), 39–71 (1996)
28.
go back to reference Pietra, S.D., Pietra, V.D., Lafferty, J.: Inducing features of random fields. TPAMI 19(4), 380–393 (1997)CrossRef Pietra, S.D., Pietra, V.D., Lafferty, J.: Inducing features of random fields. TPAMI 19(4), 380–393 (1997)CrossRef
29.
go back to reference Nocedal, J., Wright, S.: Numerical Optimization. Springer Science & Business Media, New York (2006)MATH Nocedal, J., Wright, S.: Numerical Optimization. Springer Science & Business Media, New York (2006)MATH
30.
go back to reference Malouf, R.: A comparison of algorithms for maximum entropy parameter estimation. In: The 6th Conference on Natural Language Learning (2002) Malouf, R.: A comparison of algorithms for maximum entropy parameter estimation. In: The 6th Conference on Natural Language Learning (2002)
31.
go back to reference Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. TPAMI 23(6), 681–685 (2001)CrossRef Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. TPAMI 23(6), 681–685 (2001)CrossRef
32.
go back to reference Yan, S., Wang, H., Huang, T.S., Yang, Q., Tang, X.: Ranking with uncertain labels. In: ICME (2007) Yan, S., Wang, H., Huang, T.S., Yang, Q., Tang, X.: Ranking with uncertain labels. In: ICME (2007)
33.
go back to reference Yan, S., Wang, H., Tang, X., Huang, T.S.: Learning auto-structured regressor from uncertain nonnegative labels. In: ICCV (2007) Yan, S., Wang, H., Tang, X., Huang, T.S.: Learning auto-structured regressor from uncertain nonnegative labels. In: ICCV (2007)
34.
Metadata
Title
Learning with Ambiguous Label Distribution for Apparent Age Estimation
Authors
Ke Chen
Joni-Kristian Kämäräinen
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-54187-7_22

Premium Partner