Skip to main content
Top
Published in: Cognitive Computation 1/2019

31-08-2018

Learning with Similarity Functions: a Tensor-Based Framework

Authors: Edoardo Ragusa, Paolo Gastaldo, Rodolfo Zunino, Erik Cambria

Published in: Cognitive Computation | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Machine learning algorithms are typically designed to deal with data represented as vectors. Several major applications, however, involve multi-way data, such as video sequences and multi-sensory arrays. In those cases, tensors endow a more consistent way to capture multi-modal relations, which may be lost by a conventional remapping of original data into a vector representation. This paper presents a tensor-oriented machine learning framework, and shows that the theory of learning with similarity functions provides an effective paradigm to support this framework. The proposed approach adopts a specific similarity function, which defines a measure of similarity between a pair of tensors. The performance of the tensor-based framework is evaluated on a set of complex, real-world, pattern-recognition problems. Experimental results confirm the effectiveness of the framework, which compares favorably with state-of-the-art machine learning methodologies that can accept tensors as inputs. Indeed, a formal analysis proves that the framework is more efficient than state-of-the-art methodologies also in terms of computational cost. The paper thus provides two main outcomes: (1) a theoretical framework that enables the use of tensor-oriented similarity notions and (2) a cognitively inspired notion of similarity that leads to computationally efficient predictors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Cambria E, White B. Jumping nlp curves: A review of natural language processing research. IEEE Comput Intell Mag 2014;9(2):48–57.CrossRef Cambria E, White B. Jumping nlp curves: A review of natural language processing research. IEEE Comput Intell Mag 2014;9(2):48–57.CrossRef
2.
go back to reference Liu X, Lin S, Fang J, Xu Z. Is extreme learning machine feasible? A theoretical assessment (part I). IEEE Trans Neural Netw Learn Syst 2015;26(1):7–20.CrossRefPubMed Liu X, Lin S, Fang J, Xu Z. Is extreme learning machine feasible? A theoretical assessment (part I). IEEE Trans Neural Netw Learn Syst 2015;26(1):7–20.CrossRefPubMed
3.
go back to reference Plakias S, Stamatatos E. 2008. Tensor space models for authorship identification. In: Hellenic conference on artificial intelligence, Springer, p. 239–249. Plakias S, Stamatatos E. 2008. Tensor space models for authorship identification. In: Hellenic conference on artificial intelligence, Springer, p. 239–249.
4.
go back to reference Gastaldo P, Pinna L, Seminara L, Valle M, Zunino R. A tensor-based pattern-recognition framework for the interpretation of touch modality in artificial skin systems. IEEE Sensors J 2014;14(7):2216–25.CrossRef Gastaldo P, Pinna L, Seminara L, Valle M, Zunino R. A tensor-based pattern-recognition framework for the interpretation of touch modality in artificial skin systems. IEEE Sensors J 2014;14(7):2216–25.CrossRef
5.
go back to reference Wang X-W, Nie D, Lu B-L. Emotional state classification from EEG data using machine learning approach. Neurocomputing 2014;129:94–106.CrossRef Wang X-W, Nie D, Lu B-L. Emotional state classification from EEG data using machine learning approach. Neurocomputing 2014;129:94–106.CrossRef
6.
go back to reference Zhao Q, Zhou G, Adali T, Zhang L, Cichocki A. Kernelization of tensor-based models for multiway data analysis: Processing of multidimensional structured data. IEEE Signal Process Mag 2013;30(4):137–48.CrossRef Zhao Q, Zhou G, Adali T, Zhang L, Cichocki A. Kernelization of tensor-based models for multiway data analysis: Processing of multidimensional structured data. IEEE Signal Process Mag 2013;30(4):137–48.CrossRef
7.
go back to reference Zhao Q, Zhang L, Cichocki A. Multilinear and nonlinear generalizations of partial least squares: an overview of recent advances. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2014;4(2):104–15. Zhao Q, Zhang L, Cichocki A. Multilinear and nonlinear generalizations of partial least squares: an overview of recent advances. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2014;4(2):104–15.
8.
go back to reference Liu Y, Liu Y, Chan KC. Tensor distance based multilinear locality-preserved maximum information embedding. IEEE Trans Neural Netw 2010;21(11):1848–54.CrossRefPubMed Liu Y, Liu Y, Chan KC. Tensor distance based multilinear locality-preserved maximum information embedding. IEEE Trans Neural Netw 2010;21(11):1848–54.CrossRefPubMed
9.
go back to reference Iwasaki T, Furukawa T. Tensor SOM and tensor GTM: nonlinear tensor analysis by topographic mappings. Neural Netw 2016;77:107–25.CrossRefPubMed Iwasaki T, Furukawa T. Tensor SOM and tensor GTM: nonlinear tensor analysis by topographic mappings. Neural Netw 2016;77:107–25.CrossRefPubMed
10.
go back to reference Lai Z, Wong WK, Xu Y, Zhao C, Sun M. Sparse alignment for robust tensor learning. IEEE Trans Neural Netw Learn Syst 2014;25(10):1779–92.CrossRefPubMed Lai Z, Wong WK, Xu Y, Zhao C, Sun M. Sparse alignment for robust tensor learning. IEEE Trans Neural Netw Learn Syst 2014;25(10):1779–92.CrossRefPubMed
11.
go back to reference Lu H, Plataniotis KN, Venetsanopoulos AN. A survey of multilinear subspace learning for tensor data. Pattern Recogn 2011;44(7):1540–51.CrossRef Lu H, Plataniotis KN, Venetsanopoulos AN. A survey of multilinear subspace learning for tensor data. Pattern Recogn 2011;44(7):1540–51.CrossRef
12.
go back to reference Sanguansat P. 2010. Higher-order random projection for tensor object recognition. In: 2010 International Symposium on Communications and Information Technologies (ISCIT). IEEE, p. 615–619. Sanguansat P. 2010. Higher-order random projection for tensor object recognition. In: 2010 International Symposium on Communications and Information Technologies (ISCIT). IEEE, p. 615–619.
13.
go back to reference Signoretto M, Dinh QT, De Lathauwer L, Suykens JA. Learning with tensors: a framework based on convex optimization and spectral regularization. Mach Learn 2014;94(3):303–51.CrossRef Signoretto M, Dinh QT, De Lathauwer L, Suykens JA. Learning with tensors: a framework based on convex optimization and spectral regularization. Mach Learn 2014;94(3):303–51.CrossRef
14.
go back to reference Tao D, Li X, Hu W, Maybank S, Wu X. 2005. Supervised tensor learning. In: 5th IEEE international conference on data mining, IEEE, p. 8. Tao D, Li X, Hu W, Maybank S, Wu X. 2005. Supervised tensor learning. In: 5th IEEE international conference on data mining, IEEE, p. 8.
15.
go back to reference Guo X, Huang X, Zhang L, Zhang L, Plaza A, Benediktsson JA. Support tensor machines for classification of hyperspectral remote sensing imagery. IEEE Trans Geosci Remote Sens 2016;54(6):3248–64.CrossRef Guo X, Huang X, Zhang L, Zhang L, Plaza A, Benediktsson JA. Support tensor machines for classification of hyperspectral remote sensing imagery. IEEE Trans Geosci Remote Sens 2016;54(6):3248–64.CrossRef
16.
go back to reference Wimalawarne K, Tomioka R, Sugiyama M. Theoretical and experimental analyses of tensor-based regression and classification. Neural Comput 2016;28(4):686–715.CrossRefPubMed Wimalawarne K, Tomioka R, Sugiyama M. Theoretical and experimental analyses of tensor-based regression and classification. Neural Comput 2016;28(4):686–715.CrossRefPubMed
17.
go back to reference Hao Z, He L, Chen B, Yang X. A linear support higher-order tensor machine for classification. IEEE Trans Image Process 2013;22(7):2911–2920.CrossRefPubMed Hao Z, He L, Chen B, Yang X. A linear support higher-order tensor machine for classification. IEEE Trans Image Process 2013;22(7):2911–2920.CrossRefPubMed
18.
go back to reference Signoretto M, De Lathauwer L, Suykens JA. A kernel-based framework to tensorial data analysis. Neural Netw 2011;24(8):861–74.CrossRefPubMed Signoretto M, De Lathauwer L, Suykens JA. A kernel-based framework to tensorial data analysis. Neural Netw 2011;24(8):861–74.CrossRefPubMed
19.
go back to reference Balcan M-F, Blum A, Srebro N. A theory of learning with similarity functions. Mach Learn 2008;72 (1-2):89–112.CrossRef Balcan M-F, Blum A, Srebro N. A theory of learning with similarity functions. Mach Learn 2008;72 (1-2):89–112.CrossRef
20.
go back to reference De Lathauwer L, De Moor B, Vandewalle J. A multilinear singular value decomposition. SIAM J Matrix Anal Appl 2000;21(4):1253–78.CrossRef De Lathauwer L, De Moor B, Vandewalle J. A multilinear singular value decomposition. SIAM J Matrix Anal Appl 2000;21(4):1253–78.CrossRef
21.
go back to reference Ragusa E, Gianoglio C, Gastaldo P, Zunino R. A digital implementation of extreme learning machines for resource-constrained devices, IEEE Transactions on Circuits and Systems II: Express Briefs. Ragusa E, Gianoglio C, Gastaldo P, Zunino R. A digital implementation of extreme learning machines for resource-constrained devices, IEEE Transactions on Circuits and Systems II: Express Briefs.
22.
go back to reference Hofmann T, Schölkopf B, Smola AJ. Kernel methods in machine learning. Ann Stat. 2008;36:1171–20.CrossRef Hofmann T, Schölkopf B, Smola AJ. Kernel methods in machine learning. Ann Stat. 2008;36:1171–20.CrossRef
23.
go back to reference Cichocki A, Mandic D, De Lathauwer L, Zhou G, Zhao Q, Caiafa C, Phan HA. Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Signal Process Mag 2015;32(2):145–63.CrossRef Cichocki A, Mandic D, De Lathauwer L, Zhou G, Zhao Q, Caiafa C, Phan HA. Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Signal Process Mag 2015;32(2):145–63.CrossRef
24.
go back to reference Golub GH, Van Loan CF. Matrix computations, Vol 3. Baltimore: JHU Press; 2012. Golub GH, Van Loan CF. Matrix computations, Vol 3. Baltimore: JHU Press; 2012.
25.
go back to reference Peeters T, Rodrigues P, Vilanova A, ter Haar Romeny B. 2009. Analysis of distance/similarity measures for diffusion tensor imaging. In: Visualization and Processing of Tensor Fields, Springer, p. 113–136. Peeters T, Rodrigues P, Vilanova A, ter Haar Romeny B. 2009. Analysis of distance/similarity measures for diffusion tensor imaging. In: Visualization and Processing of Tensor Fields, Springer, p. 113–136.
26.
go back to reference Landauer TK. Latent semantic analysis. New York: Wiley Online Library; 2006.CrossRef Landauer TK. Latent semantic analysis. New York: Wiley Online Library; 2006.CrossRef
27.
go back to reference Harshman RA. Foundations of the parafac procedure: models and conditions for an “explanatory” multimodal factor analysis. Harshman RA. Foundations of the parafac procedure: models and conditions for an “explanatory” multimodal factor analysis.
28.
go back to reference Krizhevsky A, Sutskever I, Hinton GE. 2012. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, p. 1097–1105. Krizhevsky A, Sutskever I, Hinton GE. 2012. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, p. 1097–1105.
29.
go back to reference Leibe B, Schiele B. 2003. Analyzing appearance and contour based methods for object categorization. In: 2003 IEEE computer society conference on computer vision and pattern recognition, 2003. Proceedings., vol 2, IEEE, p. II–409. Leibe B, Schiele B. 2003. Analyzing appearance and contour based methods for object categorization. In: 2003 IEEE computer society conference on computer vision and pattern recognition, 2003. Proceedings., vol 2, IEEE, p. II–409.
30.
go back to reference Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 1997;19(7):711–20.CrossRef Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 1997;19(7):711–20.CrossRef
31.
go back to reference Nilsback M-E, Zisserman A. 2006. A visual vocabulary for flower classification. In: 2006 IEEE computer society conference on computer vision and pattern recognition, vol 2, IEEE, p. 1447–1454. Nilsback M-E, Zisserman A. 2006. A visual vocabulary for flower classification. In: 2006 IEEE computer society conference on computer vision and pattern recognition, vol 2, IEEE, p. 1447–1454.
32.
go back to reference Schuldt C, Laptev I, Caputo B. 2004. Recognizing human actions: a local SVM approach. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004, vol 3, IEEE, p. 32–36. Schuldt C, Laptev I, Caputo B. 2004. Recognizing human actions: a local SVM approach. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004, vol 3, IEEE, p. 32–36.
33.
go back to reference Kim T-K, Cipolla R. Canonical correlation analysis of video volume tensors for action categorization and detection. IEEE Trans Pattern Anal Mach Intell 2009;31(8):1415–28.CrossRefPubMed Kim T-K, Cipolla R. Canonical correlation analysis of video volume tensors for action categorization and detection. IEEE Trans Pattern Anal Mach Intell 2009;31(8):1415–28.CrossRefPubMed
34.
go back to reference Rodriguez-Lujan I, Fonollosa J, Vergara A, Homer M, Huerta R. On the calibration of sensor arrays for pattern recognition using the minimal number of experiments. Chemom Intell Lab Syst 2014;130:123–34.CrossRef Rodriguez-Lujan I, Fonollosa J, Vergara A, Homer M, Huerta R. On the calibration of sensor arrays for pattern recognition using the minimal number of experiments. Chemom Intell Lab Syst 2014;130:123–34.CrossRef
35.
go back to reference Cai D, He X, Hu Y, Han J, Huang T. 2007. Learning a spatially smooth subspace for face recognition. In: Computer vision and pattern recognition, 2007. CVPR’07. IEEE Conference on, IEEE, 2007, p. 1–7. Cai D, He X, Hu Y, Han J, Huang T. 2007. Learning a spatially smooth subspace for face recognition. In: Computer vision and pattern recognition, 2007. CVPR’07. IEEE Conference on, IEEE, 2007, p. 1–7.
36.
go back to reference Wang Q-F, Cambria E, Liu C-L, Hussain A. Common sense knowledge for handwritten chinese text recognition. Cogn Comput 2013;5(2):234–42.CrossRef Wang Q-F, Cambria E, Liu C-L, Hussain A. Common sense knowledge for handwritten chinese text recognition. Cogn Comput 2013;5(2):234–42.CrossRef
37.
go back to reference Cambria E, Hussain A. Sentic album: content-, concept-, and context-based online personal photo management system. Cogn Comput 2012;4(4):477–496.CrossRef Cambria E, Hussain A. Sentic album: content-, concept-, and context-based online personal photo management system. Cogn Comput 2012;4(4):477–496.CrossRef
38.
go back to reference Tran H-N, Cambria E, Hussain A. Towards gpu-based common-sense reasoning: using fast subgraph matching. Cogn Comput 2016;8(6):1074–86.CrossRef Tran H-N, Cambria E, Hussain A. Towards gpu-based common-sense reasoning: using fast subgraph matching. Cogn Comput 2016;8(6):1074–86.CrossRef
Metadata
Title
Learning with Similarity Functions: a Tensor-Based Framework
Authors
Edoardo Ragusa
Paolo Gastaldo
Rodolfo Zunino
Erik Cambria
Publication date
31-08-2018
Publisher
Springer US
Published in
Cognitive Computation / Issue 1/2019
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-018-9590-9

Other articles of this Issue 1/2019

Cognitive Computation 1/2019 Go to the issue

Premium Partner