Skip to main content
Top

2023 | OriginalPaper | Chapter

Lectures on Poisson Algebras

Authors : Vladimir Rubtsov, Radek Suchánek

Published in: Groups, Invariants, Integrals, and Mathematical Physics

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The notion of a Poisson algebra was probably introduced in the first time by A.M. Vinogradov and J. S. Krasil’shchik in 1975 under the name “canonical algebra” and by J. Braconnier in his short note “Algèbres de Poisson” (Comptes rendus Ac.Sci) in 1977.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Given an increasing sequence of ideals in \(\mathcal {A}\), \(\mathcal {I}_1 \subseteq \mathcal {I}_2 \subseteq \ldots \), there always exists \(k \in \mathbb {N}\) such that \(\mathcal {I}_k = \mathcal {I}_{k+n} \) for all \(n \in \mathbb {N}\).
 
2
s1, s2 ∈ S ⇒ s1s2 ∈ S.
 
3
In this notation, ka can be interpreted equivalently as action of \(\mathbb {K}\) on \(\mathcal {A}\), or as a multiplication in \(\mathcal {A}\) after identifying \(\mathbb {K}\) with \(\iota (\mathbb {K})\). Of course we have k1 = 1k = k.
 
4
Since for a ≠ 0 : ka = 0 ⇒ k = 0.
 
5
That is, \(\mathcal {A}\) acts on \(\mathcal {M}\) from left and right.
 
6
Notice that using the action of \(\mathfrak {g}\) on itself given by multiplication from the left, we can identify elements in \(\mathfrak {g}\) as endomorphisms of \(\mathfrak {g}\), hlh. Then we have δg(lh)(u) = h(gu) − gh(u) = (adgh)u, thus \(\delta _g|{ }_{\mathfrak {g}} \equiv \operatorname {ad}_g\).
 
7
Every element of \(\mathfrak {g}\) serves as a variable. One can think of \(\mathbb {K} [\mathfrak {g}]\) as \(\mathbb {K}[g_1, g_2, \ldots ]\) for all \(g_i \in \mathfrak {g}\).
 
8
The kernel of the representation, as a homomorphism from \(\mathfrak {g}\), is trivial. Example: \(\mathfrak {g}\) acts faithfully on \(C^{\infty }(\mathfrak {g})\). Another example: \(\mathfrak {g}\) is a matrix algebra (n × n matrices), then \(\mathfrak {g}\) acts faithfully on \(\mathbb {R}^n\).
 
9
This is the evaluation map \(F_X \colon \mathfrak {g}^* \to \mathbb {R}\) (defined above), FX(ξ) = ξ(X).
 
10
Meaning \(s \in \mathfrak {X}^{|s|} (M)\).
 
11
See Definition 2.13 for the definition of Poisson center \(\operatorname {Z}_{P}(\mathcal {A})\).
 
Literature
2.
go back to reference Camille, L., Anne, P., Pol, V.: Poisson Structures. Springer, Berlin Heidelberg (2013) Camille, L., Anne, P., Pol, V.: Poisson Structures. Springer, Berlin Heidelberg (2013)
3.
go back to reference Vinogradov, A., Krasil’shchik, I.: What is the Hamiltonian formalism. Russian Math. Surv. 30, 177–202 (1975) Vinogradov, A., Krasil’shchik, I.: What is the Hamiltonian formalism. Russian Math. Surv. 30, 177–202 (1975)
4.
go back to reference Cartiere, P.: Some fundamental techniques in the theory of integrable systems. IHES-M-94-23, Sub. General Theoretical Physics, pp. 42 (1994) Cartiere, P.: Some fundamental techniques in the theory of integrable systems. IHES-M-94-23, Sub. General Theoretical Physics, pp. 42 (1994)
5.
go back to reference Bhaskara, K., Viswanath, K.: Poisson Algebras and Poisson Manifolds. Pitman Research Notes In Mathematics Series, vol. 174 (1988) Bhaskara, K., Viswanath, K.: Poisson Algebras and Poisson Manifolds. Pitman Research Notes In Mathematics Series, vol. 174 (1988)
8.
go back to reference Koszul, J.: Crochet de Schouten-Nijenhuis et cohomologie. Astérisque 137, 4–3 (1985) Koszul, J.: Crochet de Schouten-Nijenhuis et cohomologie. Astérisque 137, 4–3 (1985)
9.
go back to reference Odesskii, A.V., Rubtsov, V.N.: Polynomial Poisson algebras with regular structure of symplectic leaves. Theoret. Math. Phys. 133, 1321–1337 (2002) Odesskii, A.V., Rubtsov, V.N.: Polynomial Poisson algebras with regular structure of symplectic leaves. Theoret. Math. Phys. 133, 1321–1337 (2002)
10.
go back to reference Sklyanin, E.K.: Some algebraic structures connected with the Yang—Baxter equation. Funct. Anal. Appl. 16, 263–270 (1982) Sklyanin, E.K.: Some algebraic structures connected with the Yang—Baxter equation. Funct. Anal. Appl. 16, 263–270 (1982)
11.
go back to reference Smith, P.: The 4-dimensional Sklyanin algebras. In: Proc. of Conf. on Algebraic Geometry and Ring Theory in Honor of Michael Artin (Antwerp, 1992). K-Theory, pp. 65–80 (1994) Smith, P.: The 4-dimensional Sklyanin algebras. In: Proc. of Conf. on Algebraic Geometry and Ring Theory in Honor of Michael Artin (Antwerp, 1992). K-Theory, pp. 65–80 (1994)
12.
go back to reference Berger, R., Pichereau, A.: Calabi–Yau algebras viewed as deformations of Poisson algebras. Algebras Represent. Theory 17, 735–773 (2014) Berger, R., Pichereau, A.: Calabi–Yau algebras viewed as deformations of Poisson algebras. Algebras Represent. Theory 17, 735–773 (2014)
14.
go back to reference Kostant, B.: Quantization and Unitary Representations. Lectures in Modern Analysis and Applications III, pp. 87–208 (1970) Kostant, B.: Quantization and Unitary Representations. Lectures in Modern Analysis and Applications III, pp. 87–208 (1970)
15.
go back to reference Kirillov, A.: Method of orbits in the theory of unitary representations of Lie groups. Funct. Anal. Appl. 2, 90–93 (1968) Kirillov, A.: Method of orbits in the theory of unitary representations of Lie groups. Funct. Anal. Appl. 2, 90–93 (1968)
16.
go back to reference Kirillov, A.: Lectures on the Orbit Method. Graduate Studies in Mathematics, vol. 64 (2004) Kirillov, A.: Lectures on the Orbit Method. Graduate Studies in Mathematics, vol. 64 (2004)
17.
go back to reference Souriau, J.: Quantification géométrique. Applications. Ann. L’I.H.P. Phys. Théor. 6, 311–341 (1967) Souriau, J.: Quantification géométrique. Applications. Ann. L’I.H.P. Phys. Théor. 6, 311–341 (1967)
18.
go back to reference Román-Roy, N.: Some properties of multisymplectic manifolds. In: Classical and Quantum Physics, pp. 325–336 (2019) Román-Roy, N.: Some properties of multisymplectic manifolds. In: Classical and Quantum Physics, pp. 325–336 (2019)
22.
go back to reference Voronov, T.: On the Poisson envelope of a Lie algebra. “Noncommutative” moment space. Funct. Anal. Appl. 29, 196–199 (1995) Voronov, T.: On the Poisson envelope of a Lie algebra. “Noncommutative” moment space. Funct. Anal. Appl. 29, 196–199 (1995)
23.
go back to reference Farkas, D., Letzter, G.: Ring theory from symplectic geometry. J. Pure Appl. Algebra 125, 155–190 (1998) Farkas, D., Letzter, G.: Ring theory from symplectic geometry. J. Pure Appl. Algebra 125, 155–190 (1998)
25.
go back to reference Kontsevich, M.: Formal (non)-commutative symplectic geometry. In: The Gelfand Mathematical Seminars, 1990–1992, pp. 173–187 (1993) Kontsevich, M.: Formal (non)-commutative symplectic geometry. In: The Gelfand Mathematical Seminars, 1990–1992, pp. 173–187 (1993)
26.
go back to reference Van Den Bergh, M.: Double Poisson algebras. Trans. Am. Math. Soc. 360, 5711–5769 (2008) Van Den Bergh, M.: Double Poisson algebras. Trans. Am. Math. Soc. 360, 5711–5769 (2008)
27.
go back to reference Odesskii, A., Rubtsov, V., Sokolov, V.: Bi-Hamiltonian ordinary differential equations with matrix variables. Theoret. Math. Phys. 171, 442–447 (2012) Odesskii, A., Rubtsov, V., Sokolov, V.: Bi-Hamiltonian ordinary differential equations with matrix variables. Theoret. Math. Phys. 171, 442–447 (2012)
28.
go back to reference Aguiar, M.: On the associative analog of Lie bialgebras. J. Algebra. 244, 492–532 (2001) Aguiar, M.: On the associative analog of Lie bialgebras. J. Algebra. 244, 492–532 (2001)
29.
go back to reference Rota, G.: Baxter operators, an introduction. In: Kung, J.P.S. (ed.) Gian-Carlo Rota on Combinatorics, Introductory Papers and Commentaries, vol. 1, p. 90. Birkhäuser, Boston (1995) Rota, G.: Baxter operators, an introduction. In: Kung, J.P.S. (ed.) Gian-Carlo Rota on Combinatorics, Introductory Papers and Commentaries, vol. 1, p. 90. Birkhäuser, Boston (1995)
30.
go back to reference Odesskii, A., Rubtsov, V., Sokolov, V.: Double Poisson brackets on free associative algebras. Noncommutative Birational Geom. Representations Combin. 592, 225–239 (2013) Odesskii, A., Rubtsov, V., Sokolov, V.: Double Poisson brackets on free associative algebras. Noncommutative Birational Geom. Representations Combin. 592, 225–239 (2013)
31.
go back to reference Bielawski, R.: Quivers and Poisson structures. Manuscripta Math.. 141 (2013) Bielawski, R.: Quivers and Poisson structures. Manuscripta Math.. 141 (2013)
36.
go back to reference Crawley-Boevey, W.: Preprojective algebras, differential operators and a Conze embedding for deformations of Kleinian singularities. Comment. Math. Helv. 74, 548–574 (1999) Crawley-Boevey, W.: Preprojective algebras, differential operators and a Conze embedding for deformations of Kleinian singularities. Comment. Math. Helv. 74, 548–574 (1999)
Metadata
Title
Lectures on Poisson Algebras
Authors
Vladimir Rubtsov
Radek Suchánek
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-25666-0_2

Premium Partner