Skip to main content
Top
Published in: International Journal of Speech Technology 4/2018

18-06-2018

Line spectral frequency-based features and extreme learning machine for voice activity detection from audio signal

Authors: Himadri Mukherjee, Sk. Md. Obaidullah, K. C. Santosh, Santanu Phadikar, Kaushik Roy

Published in: International Journal of Speech Technology | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Voice activity detection (VAD) refers to the task of identifying vocal segments from an audio clip. It helps in reducing the computational overhead as well elevate the recognition performance of speech-based systems by helping to discard the non vocal portions from an input signal. In this paper, a VAD technique is presented that uses line spectral frequency-based statistical features namely LSF-S coupled with extreme learning-based classification. The experiments were performed on a database of more than 350 h consisting of data from multifarious sources. We have obtained an encouraging overall accuracy of 99.43%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Asbai, N., Bengherabi, M., Amrouche, A., & Aklouf, Y. (2015). Improving the self-adaptive voice activity detector for speaker verification using map adaptation and asymmetric tapers. International Journal of Speech Technology, 18(2), 195–203.CrossRef Asbai, N., Bengherabi, M., Amrouche, A., & Aklouf, Y. (2015). Improving the self-adaptive voice activity detector for speaker verification using map adaptation and asymmetric tapers. International Journal of Speech Technology, 18(2), 195–203.CrossRef
go back to reference Bäckström, T. (2017). Speech coding with code-excited linear prediction: Signals and communication technology (1st ed.). New York: Springer. eBook ISBN 978-3-319-50204-5. Bäckström, T. (2017). Speech coding with code-excited linear prediction: Signals and communication technology (1st ed.). New York: Springer. eBook ISBN 978-3-319-50204-5.
go back to reference Beritelli, F., Casale, S., & Russo, M. (1999). A pattern recognition approach to robust voiced/unvoiced speech classification using fuzzy logic. International Journal of Pattern Recognition and Artificial Intelligence, 13(01), 109–132.CrossRef Beritelli, F., Casale, S., & Russo, M. (1999). A pattern recognition approach to robust voiced/unvoiced speech classification using fuzzy logic. International Journal of Pattern Recognition and Artificial Intelligence, 13(01), 109–132.CrossRef
go back to reference Borin, R. G., & Silva, M. T. (2017). Voice activity detection using discriminative restricted Boltzmann machines. In EUSIPCO-2017 (pp. 523–527). Borin, R. G., & Silva, M. T. (2017). Voice activity detection using discriminative restricted Boltzmann machines. In EUSIPCO-2017 (pp. 523–527).
go back to reference Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7(Jan), 1–30.MathSciNetMATH Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7(Jan), 1–30.MathSciNetMATH
go back to reference Dey, M., Dey, N., Mahata, S. K., Chakraborty, S., Acharjee, S., & Das, A. (2014). Electrocardiogram feature based inter-human biometric authentication system. In ICESC-2014 (pp. 300–304). Dey, M., Dey, N., Mahata, S. K., Chakraborty, S., Acharjee, S., & Das, A. (2014). Electrocardiogram feature based inter-human biometric authentication system. In ICESC-2014 (pp. 300–304).
go back to reference Dharavath, K., Talukdar, F. A., Laskar, R. H., & Dey, N. (2017). Face recognition under dry and wet face conditions. In N. Dey & V. Santhi (Eds.), Intelligent techniques in signal processing for multimedia security (pp. 253–271). Cham: Springer.CrossRef Dharavath, K., Talukdar, F. A., Laskar, R. H., & Dey, N. (2017). Face recognition under dry and wet face conditions. In N. Dey & V. Santhi (Eds.), Intelligent techniques in signal processing for multimedia security (pp. 253–271). Cham: Springer.CrossRef
go back to reference Ding, S., Zhang, N., Zhang, J., Xu, X., & Shi, Z. (2017). Unsupervised extreme learning machine with representational features. International Journal of Machine Learning and Cybernetics, 8(2), 587–595.CrossRef Ding, S., Zhang, N., Zhang, J., Xu, X., & Shi, Z. (2017). Unsupervised extreme learning machine with representational features. International Journal of Machine Learning and Cybernetics, 8(2), 587–595.CrossRef
go back to reference Dudley, H. (1939). The vocoder. Bell Labs Record, 17, 122–126. Dudley, H. (1939). The vocoder. Bell Labs Record, 17, 122–126.
go back to reference Dudley, H., Riesz, R. R., & Watkins, S. A. (1939). A synthetic speaker. Journal of Franklin Institute, 227, 739–764.CrossRef Dudley, H., Riesz, R. R., & Watkins, S. A. (1939). A synthetic speaker. Journal of Franklin Institute, 227, 739–764.CrossRef
go back to reference Freeman, D. K., Cosier, G., Southcott, C. B., & Boyd, I. (1989). The voice activity detector for the Pan-European digital cellular mobile telephone service. In ICASSP-1989, (pp. 369–372). Freeman, D. K., Cosier, G., Southcott, C. B., & Boyd, I. (1989). The voice activity detector for the Pan-European digital cellular mobile telephone service. In ICASSP-1989, (pp. 369–372).
go back to reference Ghosh, P. K., Tsiartas, A., & Narayanan, S. (2011). Robust voice activity detection using long-term signal variability. IEEE Transactions on Audio, Speech, and Language Processing, 19(3), 600–613.CrossRef Ghosh, P. K., Tsiartas, A., & Narayanan, S. (2011). Robust voice activity detection using long-term signal variability. IEEE Transactions on Audio, Speech, and Language Processing, 19(3), 600–613.CrossRef
go back to reference Gil-Pita, R., Garca-Gomez, J., Bautista-Durn, M., Combarro, E., & Cocana-Fernandez, A. (2017). Evolved frequency log-energy coefficients for voice activity detection in hearing aids. In FUZZ-IEEE-2017 (pp. 1–6). Gil-Pita, R., Garca-Gomez, J., Bautista-Durn, M., Combarro, E., & Cocana-Fernandez, A. (2017). Evolved frequency log-energy coefficients for voice activity detection in hearing aids. In FUZZ-IEEE-2017 (pp. 1–6).
go back to reference Gorriz, J. M., Ramrez, J., Lang, E. W., & Puntonet, C. G. (2006). Hard c-means clustering for voice activity detection. Speech Communication, 48(12), 1638–1649.CrossRef Gorriz, J. M., Ramrez, J., Lang, E. W., & Puntonet, C. G. (2006). Hard c-means clustering for voice activity detection. Speech Communication, 48(12), 1638–1649.CrossRef
go back to reference Graf, S., Herbig, T., Buck, M., & Schmidt, G. (2015). Features for voice activity detection: A comparative analysis. EURASIP Journal on Advances in Signal Processing, 2015(1), 91.CrossRef Graf, S., Herbig, T., Buck, M., & Schmidt, G. (2015). Features for voice activity detection: A comparative analysis. EURASIP Journal on Advances in Signal Processing, 2015(1), 91.CrossRef
go back to reference Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18.CrossRef Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18.CrossRef
go back to reference Hamaidi, L. K., Muma, M., & Zoubir, A. M. (2017). Robust distributed multi-speaker voice activity detection using stability selection for sparse non-negative feature extraction. In EUSIPCO-2017 (pp. 161–165). Hamaidi, L. K., Muma, M., & Zoubir, A. M. (2017). Robust distributed multi-speaker voice activity detection using stability selection for sparse non-negative feature extraction. In EUSIPCO-2017 (pp. 161–165).
go back to reference Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66(1), 51–83.CrossRef Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66(1), 51–83.CrossRef
go back to reference Hu, K., Zhou, Z., Weng, L., Liu, J., Wang, L., Su, Y., et al. (2017). An optimization strategy for weighted extreme learning machine based on PSO. International Journal of Pattern Recognition and Artificial Intelligence, 31(01), 1751001.CrossRef Hu, K., Zhou, Z., Weng, L., Liu, J., Wang, L., Su, Y., et al. (2017). An optimization strategy for weighted extreme learning machine based on PSO. International Journal of Pattern Recognition and Artificial Intelligence, 31(01), 1751001.CrossRef
go back to reference Huang, G. B., Bai, Z., Kasun, L. L. C., & Vong, C. M. (2015). Local receptive fields based extreme learning machine. IEEE Computational Intelligence Magazine, 10(2), 18–29.CrossRef Huang, G. B., Bai, Z., Kasun, L. L. C., & Vong, C. M. (2015). Local receptive fields based extreme learning machine. IEEE Computational Intelligence Magazine, 10(2), 18–29.CrossRef
go back to reference Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501.CrossRef Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501.CrossRef
go back to reference Hussain, T., Siniscalchi, S. M., Lee, C. C., Wang, S. S., Tsao, Y., & Liao, W. H. (2017). Experimental study on extreme learning machine applications for speech enhancement. IEEE Access, 5, 25542–25554.CrossRef Hussain, T., Siniscalchi, S. M., Lee, C. C., Wang, S. S., Tsao, Y., & Liao, W. H. (2017). Experimental study on extreme learning machine applications for speech enhancement. IEEE Access, 5, 25542–25554.CrossRef
go back to reference Joseph, S. M., & Babu, A. P. (2016). Wavelet energy based voice activity detection and adaptive thresholding for efficient speech coding. International Journal of Speech Technology, 19(3), 537–550.CrossRef Joseph, S. M., & Babu, A. P. (2016). Wavelet energy based voice activity detection and adaptive thresholding for efficient speech coding. International Journal of Speech Technology, 19(3), 537–550.CrossRef
go back to reference Ma, Y., & Nishihara, A. (2013). Efficient voice activity detection algorithm using long-term spectral flatness measure. EURASIP Journal on Audio, Speech, and Music Processing, 2013(1), 87.CrossRef Ma, Y., & Nishihara, A. (2013). Efficient voice activity detection algorithm using long-term spectral flatness measure. EURASIP Journal on Audio, Speech, and Music Processing, 2013(1), 87.CrossRef
go back to reference Odelowo, B. O., & Anderson, D. V. (2017). Speech enhancement using extreme learning machines. In WASPAA-2017 (pp. 200–204). Odelowo, B. O., & Anderson, D. V. (2017). Speech enhancement using extreme learning machines. In WASPAA-2017 (pp. 200–204).
go back to reference Paliwal, K. K. (1992). On the use of line spectral frequency parameters for speech recognition. Digital Signal Processing, 2(2), 80–87.CrossRef Paliwal, K. K. (1992). On the use of line spectral frequency parameters for speech recognition. Digital Signal Processing, 2(2), 80–87.CrossRef
go back to reference Pasad, A., Sabu, K., & Rao, P. (2017). Voice activity detection for children’s read speech recognition in noisy conditions. In NCC-2017 (pp. 1–6). Pasad, A., Sabu, K., & Rao, P. (2017). Voice activity detection for children’s read speech recognition in noisy conditions. In NCC-2017 (pp. 1–6).
go back to reference Rajeswari, P., Raju, S. V., Ashour, A. S., & Dey, N. (2017). Multi-fingerprint unimodelbased biometric authentication supporting cloud computing. In N. Dey & V. Santhi (Eds.), Intelligent techniques in signal processing for multimedia security (pp. 469–485). Cham: Springer. Rajeswari, P., Raju, S. V., Ashour, A. S., & Dey, N. (2017). Multi-fingerprint unimodelbased biometric authentication supporting cloud computing. In N. Dey & V. Santhi (Eds.), Intelligent techniques in signal processing for multimedia security (pp. 469–485). Cham: Springer.
go back to reference Shi, Y. Q., Li, R. W., Zhang, S., Wang, S., & Yi, X. Q. (2016). A speech endpoint detection algorithm based on BP neural network and multiple features. In AMMIS-2015 (pp. 393–402). Shi, Y. Q., Li, R. W., Zhang, S., Wang, S., & Yi, X. Q. (2016). A speech endpoint detection algorithm based on BP neural network and multiple features. In AMMIS-2015 (pp. 393–402).
go back to reference Solé-Casals, J., Martí-Puig, P., Reig-Bolaño, R., & Zaiats, V. (2009). Score function for voice activity detection. In NOLISP-09 (pp. 76–83). Solé-Casals, J., Martí-Puig, P., Reig-Bolaño, R., & Zaiats, V. (2009). Score function for voice activity detection. In NOLISP-09 (pp. 76–83).
go back to reference Vajda, S., & Santosh, K. C. (2016). A Fast k-Nearest Neighbor Classifier Using Unsupervised Clustering. In RTIP2R-2016 (pp. 185–193). Vajda, S., & Santosh, K. C. (2016). A Fast k-Nearest Neighbor Classifier Using Unsupervised Clustering. In RTIP2R-2016 (pp. 185–193).
go back to reference Wang, L., Phapatanaburi, K., Go, Z., Nakagawa, S., Iwahashi, M., & Dang, J. (2017). Phase aware deep neural network for noise robust voice activity detection. In ICME-17 (pp. 1087–1092). Wang, L., Phapatanaburi, K., Go, Z., Nakagawa, S., Iwahashi, M., & Dang, J. (2017). Phase aware deep neural network for noise robust voice activity detection. In ICME-17 (pp. 1087–1092).
go back to reference Wei, H., Long, Y., & Mao, H. (2016). Improvements on self-adaptive voice activity detector for telephone data. International Journal of Speech Technology, 19(3), 623–630.CrossRef Wei, H., Long, Y., & Mao, H. (2016). Improvements on self-adaptive voice activity detector for telephone data. International Journal of Speech Technology, 19(3), 623–630.CrossRef
go back to reference Wu, B., Ren, X., Liu, C., & Zhang, Y. (1997). A robust, real-time voice activity detection algorithm for embedded mobile devices. Journal of Sol-Gel Science and Technology, 8(2), 133–146.CrossRef Wu, B., Ren, X., Liu, C., & Zhang, Y. (1997). A robust, real-time voice activity detection algorithm for embedded mobile devices. Journal of Sol-Gel Science and Technology, 8(2), 133–146.CrossRef
go back to reference Wu, G. D., & Wu, P. J. (2016). Type-2 fuzzy neural network for voice activity detection. In iFuzzy-2016 (pp. 1–4). Wu, G. D., & Wu, P. J. (2016). Type-2 fuzzy neural network for voice activity detection. In iFuzzy-2016 (pp. 1–4).
go back to reference Wu, J., & Zhang, X. L. (2011). An efficient voice activity detection algorithm by combining statistical model and energy detection. EURASIP Journal on Advances in Signal Processing, 2011(1), 18.CrossRef Wu, J., & Zhang, X. L. (2011). An efficient voice activity detection algorithm by combining statistical model and energy detection. EURASIP Journal on Advances in Signal Processing, 2011(1), 18.CrossRef
go back to reference Yoo, I. C., Lim, H., & Yook, D. (2015). Formant-based robust voice activity detection. IEEE/ACM Transactions on Audio, Speech and Language Processing, 23(12), 2238–2245.CrossRef Yoo, I. C., Lim, H., & Yook, D. (2015). Formant-based robust voice activity detection. IEEE/ACM Transactions on Audio, Speech and Language Processing, 23(12), 2238–2245.CrossRef
go back to reference Zhao, H., Guo, X., Wang, M., Li, T., Pang, C., & Georgakopoulos, D. (2018). Analyze EEG signals with extreme learning machine based on PMIS feature selection. International Journal of Machine Learning and Cybernetics, 9(2), 243–249.CrossRef Zhao, H., Guo, X., Wang, M., Li, T., Pang, C., & Georgakopoulos, D. (2018). Analyze EEG signals with extreme learning machine based on PMIS feature selection. International Journal of Machine Learning and Cybernetics, 9(2), 243–249.CrossRef
Metadata
Title
Line spectral frequency-based features and extreme learning machine for voice activity detection from audio signal
Authors
Himadri Mukherjee
Sk. Md. Obaidullah
K. C. Santosh
Santanu Phadikar
Kaushik Roy
Publication date
18-06-2018
Publisher
Springer US
Published in
International Journal of Speech Technology / Issue 4/2018
Print ISSN: 1381-2416
Electronic ISSN: 1572-8110
DOI
https://doi.org/10.1007/s10772-018-9525-6

Other articles of this Issue 4/2018

International Journal of Speech Technology 4/2018 Go to the issue