Skip to main content
Erschienen in: International Journal of Speech Technology 4/2018

18.06.2018

Line spectral frequency-based features and extreme learning machine for voice activity detection from audio signal

verfasst von: Himadri Mukherjee, Sk. Md. Obaidullah, K. C. Santosh, Santanu Phadikar, Kaushik Roy

Erschienen in: International Journal of Speech Technology | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Voice activity detection (VAD) refers to the task of identifying vocal segments from an audio clip. It helps in reducing the computational overhead as well elevate the recognition performance of speech-based systems by helping to discard the non vocal portions from an input signal. In this paper, a VAD technique is presented that uses line spectral frequency-based statistical features namely LSF-S coupled with extreme learning-based classification. The experiments were performed on a database of more than 350 h consisting of data from multifarious sources. We have obtained an encouraging overall accuracy of 99.43%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Asbai, N., Bengherabi, M., Amrouche, A., & Aklouf, Y. (2015). Improving the self-adaptive voice activity detector for speaker verification using map adaptation and asymmetric tapers. International Journal of Speech Technology, 18(2), 195–203.CrossRef Asbai, N., Bengherabi, M., Amrouche, A., & Aklouf, Y. (2015). Improving the self-adaptive voice activity detector for speaker verification using map adaptation and asymmetric tapers. International Journal of Speech Technology, 18(2), 195–203.CrossRef
Zurück zum Zitat Bäckström, T. (2017). Speech coding with code-excited linear prediction: Signals and communication technology (1st ed.). New York: Springer. eBook ISBN 978-3-319-50204-5. Bäckström, T. (2017). Speech coding with code-excited linear prediction: Signals and communication technology (1st ed.). New York: Springer. eBook ISBN 978-3-319-50204-5.
Zurück zum Zitat Beritelli, F., Casale, S., & Russo, M. (1999). A pattern recognition approach to robust voiced/unvoiced speech classification using fuzzy logic. International Journal of Pattern Recognition and Artificial Intelligence, 13(01), 109–132.CrossRef Beritelli, F., Casale, S., & Russo, M. (1999). A pattern recognition approach to robust voiced/unvoiced speech classification using fuzzy logic. International Journal of Pattern Recognition and Artificial Intelligence, 13(01), 109–132.CrossRef
Zurück zum Zitat Borin, R. G., & Silva, M. T. (2017). Voice activity detection using discriminative restricted Boltzmann machines. In EUSIPCO-2017 (pp. 523–527). Borin, R. G., & Silva, M. T. (2017). Voice activity detection using discriminative restricted Boltzmann machines. In EUSIPCO-2017 (pp. 523–527).
Zurück zum Zitat Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7(Jan), 1–30.MathSciNetMATH Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7(Jan), 1–30.MathSciNetMATH
Zurück zum Zitat Dey, M., Dey, N., Mahata, S. K., Chakraborty, S., Acharjee, S., & Das, A. (2014). Electrocardiogram feature based inter-human biometric authentication system. In ICESC-2014 (pp. 300–304). Dey, M., Dey, N., Mahata, S. K., Chakraborty, S., Acharjee, S., & Das, A. (2014). Electrocardiogram feature based inter-human biometric authentication system. In ICESC-2014 (pp. 300–304).
Zurück zum Zitat Dharavath, K., Talukdar, F. A., Laskar, R. H., & Dey, N. (2017). Face recognition under dry and wet face conditions. In N. Dey & V. Santhi (Eds.), Intelligent techniques in signal processing for multimedia security (pp. 253–271). Cham: Springer.CrossRef Dharavath, K., Talukdar, F. A., Laskar, R. H., & Dey, N. (2017). Face recognition under dry and wet face conditions. In N. Dey & V. Santhi (Eds.), Intelligent techniques in signal processing for multimedia security (pp. 253–271). Cham: Springer.CrossRef
Zurück zum Zitat Ding, S., Zhang, N., Zhang, J., Xu, X., & Shi, Z. (2017). Unsupervised extreme learning machine with representational features. International Journal of Machine Learning and Cybernetics, 8(2), 587–595.CrossRef Ding, S., Zhang, N., Zhang, J., Xu, X., & Shi, Z. (2017). Unsupervised extreme learning machine with representational features. International Journal of Machine Learning and Cybernetics, 8(2), 587–595.CrossRef
Zurück zum Zitat Dudley, H. (1939). The vocoder. Bell Labs Record, 17, 122–126. Dudley, H. (1939). The vocoder. Bell Labs Record, 17, 122–126.
Zurück zum Zitat Dudley, H., Riesz, R. R., & Watkins, S. A. (1939). A synthetic speaker. Journal of Franklin Institute, 227, 739–764.CrossRef Dudley, H., Riesz, R. R., & Watkins, S. A. (1939). A synthetic speaker. Journal of Franklin Institute, 227, 739–764.CrossRef
Zurück zum Zitat Freeman, D. K., Cosier, G., Southcott, C. B., & Boyd, I. (1989). The voice activity detector for the Pan-European digital cellular mobile telephone service. In ICASSP-1989, (pp. 369–372). Freeman, D. K., Cosier, G., Southcott, C. B., & Boyd, I. (1989). The voice activity detector for the Pan-European digital cellular mobile telephone service. In ICASSP-1989, (pp. 369–372).
Zurück zum Zitat Ghosh, P. K., Tsiartas, A., & Narayanan, S. (2011). Robust voice activity detection using long-term signal variability. IEEE Transactions on Audio, Speech, and Language Processing, 19(3), 600–613.CrossRef Ghosh, P. K., Tsiartas, A., & Narayanan, S. (2011). Robust voice activity detection using long-term signal variability. IEEE Transactions on Audio, Speech, and Language Processing, 19(3), 600–613.CrossRef
Zurück zum Zitat Gil-Pita, R., Garca-Gomez, J., Bautista-Durn, M., Combarro, E., & Cocana-Fernandez, A. (2017). Evolved frequency log-energy coefficients for voice activity detection in hearing aids. In FUZZ-IEEE-2017 (pp. 1–6). Gil-Pita, R., Garca-Gomez, J., Bautista-Durn, M., Combarro, E., & Cocana-Fernandez, A. (2017). Evolved frequency log-energy coefficients for voice activity detection in hearing aids. In FUZZ-IEEE-2017 (pp. 1–6).
Zurück zum Zitat Gorriz, J. M., Ramrez, J., Lang, E. W., & Puntonet, C. G. (2006). Hard c-means clustering for voice activity detection. Speech Communication, 48(12), 1638–1649.CrossRef Gorriz, J. M., Ramrez, J., Lang, E. W., & Puntonet, C. G. (2006). Hard c-means clustering for voice activity detection. Speech Communication, 48(12), 1638–1649.CrossRef
Zurück zum Zitat Graf, S., Herbig, T., Buck, M., & Schmidt, G. (2015). Features for voice activity detection: A comparative analysis. EURASIP Journal on Advances in Signal Processing, 2015(1), 91.CrossRef Graf, S., Herbig, T., Buck, M., & Schmidt, G. (2015). Features for voice activity detection: A comparative analysis. EURASIP Journal on Advances in Signal Processing, 2015(1), 91.CrossRef
Zurück zum Zitat Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18.CrossRef Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18.CrossRef
Zurück zum Zitat Hamaidi, L. K., Muma, M., & Zoubir, A. M. (2017). Robust distributed multi-speaker voice activity detection using stability selection for sparse non-negative feature extraction. In EUSIPCO-2017 (pp. 161–165). Hamaidi, L. K., Muma, M., & Zoubir, A. M. (2017). Robust distributed multi-speaker voice activity detection using stability selection for sparse non-negative feature extraction. In EUSIPCO-2017 (pp. 161–165).
Zurück zum Zitat Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66(1), 51–83.CrossRef Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66(1), 51–83.CrossRef
Zurück zum Zitat Hu, K., Zhou, Z., Weng, L., Liu, J., Wang, L., Su, Y., et al. (2017). An optimization strategy for weighted extreme learning machine based on PSO. International Journal of Pattern Recognition and Artificial Intelligence, 31(01), 1751001.CrossRef Hu, K., Zhou, Z., Weng, L., Liu, J., Wang, L., Su, Y., et al. (2017). An optimization strategy for weighted extreme learning machine based on PSO. International Journal of Pattern Recognition and Artificial Intelligence, 31(01), 1751001.CrossRef
Zurück zum Zitat Huang, G. B., Bai, Z., Kasun, L. L. C., & Vong, C. M. (2015). Local receptive fields based extreme learning machine. IEEE Computational Intelligence Magazine, 10(2), 18–29.CrossRef Huang, G. B., Bai, Z., Kasun, L. L. C., & Vong, C. M. (2015). Local receptive fields based extreme learning machine. IEEE Computational Intelligence Magazine, 10(2), 18–29.CrossRef
Zurück zum Zitat Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501.CrossRef Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501.CrossRef
Zurück zum Zitat Hussain, T., Siniscalchi, S. M., Lee, C. C., Wang, S. S., Tsao, Y., & Liao, W. H. (2017). Experimental study on extreme learning machine applications for speech enhancement. IEEE Access, 5, 25542–25554.CrossRef Hussain, T., Siniscalchi, S. M., Lee, C. C., Wang, S. S., Tsao, Y., & Liao, W. H. (2017). Experimental study on extreme learning machine applications for speech enhancement. IEEE Access, 5, 25542–25554.CrossRef
Zurück zum Zitat Joseph, S. M., & Babu, A. P. (2016). Wavelet energy based voice activity detection and adaptive thresholding for efficient speech coding. International Journal of Speech Technology, 19(3), 537–550.CrossRef Joseph, S. M., & Babu, A. P. (2016). Wavelet energy based voice activity detection and adaptive thresholding for efficient speech coding. International Journal of Speech Technology, 19(3), 537–550.CrossRef
Zurück zum Zitat Luo, Y., Yang, B., Xu, L., Hao, L., Liu, J., Yao, Y., et al. (2017). Segmentation of the left ventricle in cardiac MRI using a hierarchical extreme learning machine model. International Journal of Machine Learning and Cybernetics. https://doi.org/10.1007/s13042-017-0678-4. Luo, Y., Yang, B., Xu, L., Hao, L., Liu, J., Yao, Y., et al. (2017). Segmentation of the left ventricle in cardiac MRI using a hierarchical extreme learning machine model. International Journal of Machine Learning and Cybernetics. https://​doi.​org/​10.​1007/​s13042-017-0678-4.
Zurück zum Zitat Ma, Y., & Nishihara, A. (2013). Efficient voice activity detection algorithm using long-term spectral flatness measure. EURASIP Journal on Audio, Speech, and Music Processing, 2013(1), 87.CrossRef Ma, Y., & Nishihara, A. (2013). Efficient voice activity detection algorithm using long-term spectral flatness measure. EURASIP Journal on Audio, Speech, and Music Processing, 2013(1), 87.CrossRef
Zurück zum Zitat Odelowo, B. O., & Anderson, D. V. (2017). Speech enhancement using extreme learning machines. In WASPAA-2017 (pp. 200–204). Odelowo, B. O., & Anderson, D. V. (2017). Speech enhancement using extreme learning machines. In WASPAA-2017 (pp. 200–204).
Zurück zum Zitat Paliwal, K. K. (1992). On the use of line spectral frequency parameters for speech recognition. Digital Signal Processing, 2(2), 80–87.CrossRef Paliwal, K. K. (1992). On the use of line spectral frequency parameters for speech recognition. Digital Signal Processing, 2(2), 80–87.CrossRef
Zurück zum Zitat Pasad, A., Sabu, K., & Rao, P. (2017). Voice activity detection for children’s read speech recognition in noisy conditions. In NCC-2017 (pp. 1–6). Pasad, A., Sabu, K., & Rao, P. (2017). Voice activity detection for children’s read speech recognition in noisy conditions. In NCC-2017 (pp. 1–6).
Zurück zum Zitat Rajeswari, P., Raju, S. V., Ashour, A. S., & Dey, N. (2017). Multi-fingerprint unimodelbased biometric authentication supporting cloud computing. In N. Dey & V. Santhi (Eds.), Intelligent techniques in signal processing for multimedia security (pp. 469–485). Cham: Springer. Rajeswari, P., Raju, S. V., Ashour, A. S., & Dey, N. (2017). Multi-fingerprint unimodelbased biometric authentication supporting cloud computing. In N. Dey & V. Santhi (Eds.), Intelligent techniques in signal processing for multimedia security (pp. 469–485). Cham: Springer.
Zurück zum Zitat Shi, Y. Q., Li, R. W., Zhang, S., Wang, S., & Yi, X. Q. (2016). A speech endpoint detection algorithm based on BP neural network and multiple features. In AMMIS-2015 (pp. 393–402). Shi, Y. Q., Li, R. W., Zhang, S., Wang, S., & Yi, X. Q. (2016). A speech endpoint detection algorithm based on BP neural network and multiple features. In AMMIS-2015 (pp. 393–402).
Zurück zum Zitat Solé-Casals, J., Martí-Puig, P., Reig-Bolaño, R., & Zaiats, V. (2009). Score function for voice activity detection. In NOLISP-09 (pp. 76–83). Solé-Casals, J., Martí-Puig, P., Reig-Bolaño, R., & Zaiats, V. (2009). Score function for voice activity detection. In NOLISP-09 (pp. 76–83).
Zurück zum Zitat Vajda, S., & Santosh, K. C. (2016). A Fast k-Nearest Neighbor Classifier Using Unsupervised Clustering. In RTIP2R-2016 (pp. 185–193). Vajda, S., & Santosh, K. C. (2016). A Fast k-Nearest Neighbor Classifier Using Unsupervised Clustering. In RTIP2R-2016 (pp. 185–193).
Zurück zum Zitat Wang, L., Phapatanaburi, K., Go, Z., Nakagawa, S., Iwahashi, M., & Dang, J. (2017). Phase aware deep neural network for noise robust voice activity detection. In ICME-17 (pp. 1087–1092). Wang, L., Phapatanaburi, K., Go, Z., Nakagawa, S., Iwahashi, M., & Dang, J. (2017). Phase aware deep neural network for noise robust voice activity detection. In ICME-17 (pp. 1087–1092).
Zurück zum Zitat Wei, H., Long, Y., & Mao, H. (2016). Improvements on self-adaptive voice activity detector for telephone data. International Journal of Speech Technology, 19(3), 623–630.CrossRef Wei, H., Long, Y., & Mao, H. (2016). Improvements on self-adaptive voice activity detector for telephone data. International Journal of Speech Technology, 19(3), 623–630.CrossRef
Zurück zum Zitat Wu, B., Ren, X., Liu, C., & Zhang, Y. (1997). A robust, real-time voice activity detection algorithm for embedded mobile devices. Journal of Sol-Gel Science and Technology, 8(2), 133–146.CrossRef Wu, B., Ren, X., Liu, C., & Zhang, Y. (1997). A robust, real-time voice activity detection algorithm for embedded mobile devices. Journal of Sol-Gel Science and Technology, 8(2), 133–146.CrossRef
Zurück zum Zitat Wu, G. D., & Wu, P. J. (2016). Type-2 fuzzy neural network for voice activity detection. In iFuzzy-2016 (pp. 1–4). Wu, G. D., & Wu, P. J. (2016). Type-2 fuzzy neural network for voice activity detection. In iFuzzy-2016 (pp. 1–4).
Zurück zum Zitat Wu, J., & Zhang, X. L. (2011). An efficient voice activity detection algorithm by combining statistical model and energy detection. EURASIP Journal on Advances in Signal Processing, 2011(1), 18.CrossRef Wu, J., & Zhang, X. L. (2011). An efficient voice activity detection algorithm by combining statistical model and energy detection. EURASIP Journal on Advances in Signal Processing, 2011(1), 18.CrossRef
Zurück zum Zitat Yoo, I. C., Lim, H., & Yook, D. (2015). Formant-based robust voice activity detection. IEEE/ACM Transactions on Audio, Speech and Language Processing, 23(12), 2238–2245.CrossRef Yoo, I. C., Lim, H., & Yook, D. (2015). Formant-based robust voice activity detection. IEEE/ACM Transactions on Audio, Speech and Language Processing, 23(12), 2238–2245.CrossRef
Zurück zum Zitat Zhao, H., Guo, X., Wang, M., Li, T., Pang, C., & Georgakopoulos, D. (2018). Analyze EEG signals with extreme learning machine based on PMIS feature selection. International Journal of Machine Learning and Cybernetics, 9(2), 243–249.CrossRef Zhao, H., Guo, X., Wang, M., Li, T., Pang, C., & Georgakopoulos, D. (2018). Analyze EEG signals with extreme learning machine based on PMIS feature selection. International Journal of Machine Learning and Cybernetics, 9(2), 243–249.CrossRef
Metadaten
Titel
Line spectral frequency-based features and extreme learning machine for voice activity detection from audio signal
verfasst von
Himadri Mukherjee
Sk. Md. Obaidullah
K. C. Santosh
Santanu Phadikar
Kaushik Roy
Publikationsdatum
18.06.2018
Verlag
Springer US
Erschienen in
International Journal of Speech Technology / Ausgabe 4/2018
Print ISSN: 1381-2416
Elektronische ISSN: 1572-8110
DOI
https://doi.org/10.1007/s10772-018-9525-6

Weitere Artikel der Ausgabe 4/2018

International Journal of Speech Technology 4/2018 Zur Ausgabe

Neuer Inhalt