Skip to main content
Top

2019 | OriginalPaper | Chapter

6. Linear Kinetic Analysis of Evaporation and Condensation

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nonequilibrium evaporation and condensation are important aspects in numerous fundamental and applied problems. Designing heat screens for space vehicles includes simulating the events of the depressurization of the protection shell of nuclear power units. This problem requires calculation of parameters for strong evaporation of coolant during ejection into vacuum (Larina et al. in Fluid Dyn (1):127−133, 1996 [1]).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
We shall be concerned with the case of single-atom gas.
 
2
Herein the concept of “jump” is used only referring to the desired jumps on the condensed phase surface.
 
3
Below for convenience we shall drop the subscript and write: \( J_{1}^{ + } \equiv J^{ + } , J_{1}^{ - } \equiv J^{ - } \)
 
Literature
1.
go back to reference Larina IN, Rykov VA, Shakhov EM (1996) Evaporation from a surface and vapor flow through a plane channel into a vacuum. Fluid Dyn 1:127–133CrossRef Larina IN, Rykov VA, Shakhov EM (1996) Evaporation from a surface and vapor flow through a plane channel into a vacuum. Fluid Dyn 1:127–133CrossRef
2.
go back to reference Kryukov AP, Yastrebov AK (2003) Analysis of the transfer processes in a vapor film during the injection of a highly heated body with a cold liquid. High Temp 41(5):680–687CrossRef Kryukov AP, Yastrebov AK (2003) Analysis of the transfer processes in a vapor film during the injection of a highly heated body with a cold liquid. High Temp 41(5):680–687CrossRef
3.
go back to reference Lezhnin SI, Kachulin DI (2013) The various factors influence on the shape of the pressure pulse at the liquid-vapor contact. J. Eng Thermophys 22(1):69–76CrossRef Lezhnin SI, Kachulin DI (2013) The various factors influence on the shape of the pressure pulse at the liquid-vapor contact. J. Eng Thermophys 22(1):69–76CrossRef
5.
go back to reference Bobylev AV (1987) Accurrate and approximate methods in the theory of the Boltzmann and Landau nonlinear kinetic equations. Keldysh Institute Preprints, Moscow (In Russian) Bobylev AV (1987) Accurrate and approximate methods in the theory of the Boltzmann and Landau nonlinear kinetic equations. Keldysh Institute Preprints, Moscow (In Russian)
6.
go back to reference Latyshev AV, Yushkanov AA (2008) Analytical methods in kinetic theory. Moscow State Regional University, Moscow (In Russian) Latyshev AV, Yushkanov AA (2008) Analytical methods in kinetic theory. Moscow State Regional University, Moscow (In Russian)
7.
go back to reference Labuntsov DA (1967) An analysis of the processes of evaporation and condensation. High Temp 5(4):579–647 Labuntsov DA (1967) An analysis of the processes of evaporation and condensation. High Temp 5(4):579–647
8.
go back to reference Muratova TM, Labuntsov DA (1969) Kinetic analysis of the processes of evaporation and condensation. High Temp 7(5):959–967 Muratova TM, Labuntsov DA (1969) Kinetic analysis of the processes of evaporation and condensation. High Temp 7(5):959–967
9.
go back to reference Labuntsov DA (2000) Physical foundations of power engineering. Selected works, Moscow Power Energetic Univ. (Publ.), Moscow (in Russian) Labuntsov DA (2000) Physical foundations of power engineering. Selected works, Moscow Power Energetic Univ. (Publ.), Moscow (in Russian)
10.
go back to reference Siewert CE (2003) Heat transfer and evaporation/condensation problems based on the linearized Boltzmann equation. Eur J Mech B Fluids 22:391–408MathSciNetCrossRef Siewert CE (2003) Heat transfer and evaporation/condensation problems based on the linearized Boltzmann equation. Eur J Mech B Fluids 22:391–408MathSciNetCrossRef
11.
go back to reference Anisimov SI (1968) Vaporization of metal absorbing laser radiation. Sov Phys JETP 27(1):182–183 Anisimov SI (1968) Vaporization of metal absorbing laser radiation. Sov Phys JETP 27(1):182–183
12.
go back to reference Labuntsov DA, Kryukov AP (1977) Processes of intense evaporation. Therm Eng 4:8–11 Labuntsov DA, Kryukov AP (1977) Processes of intense evaporation. Therm Eng 4:8–11
13.
go back to reference Labuntsov DA, Kryukov AP (1979) Analysis of intensive evaporation and condensation. Int J Heat Mass Transf 2(7):989–1002CrossRef Labuntsov DA, Kryukov AP (1979) Analysis of intensive evaporation and condensation. Int J Heat Mass Transf 2(7):989–1002CrossRef
14.
go back to reference Yano T (2008) Half-space problem for gas flows with evaporation or condensation on a planar interface with a general boundary condition. Fluid Dyn Res 40(7–8):474–484MathSciNetCrossRef Yano T (2008) Half-space problem for gas flows with evaporation or condensation on a planar interface with a general boundary condition. Fluid Dyn Res 40(7–8):474–484MathSciNetCrossRef
15.
go back to reference Zudin YB (2015) The approximate kinetic analysis of strong condensation. Thermophys Aeromech 22(1):73–84CrossRef Zudin YB (2015) The approximate kinetic analysis of strong condensation. Thermophys Aeromech 22(1):73–84CrossRef
16.
go back to reference Zhakhovskii VV, Anisimov SI (1997) Molecular-dynamics simulation of evaporation of a liquid. J Exp Theor Phys 84(4):734–745CrossRef Zhakhovskii VV, Anisimov SI (1997) Molecular-dynamics simulation of evaporation of a liquid. J Exp Theor Phys 84(4):734–745CrossRef
17.
go back to reference Carslaw HS, Jaeger JC (1986) Conduction of heat in solids. Clarendon, LondonMATH Carslaw HS, Jaeger JC (1986) Conduction of heat in solids. Clarendon, LondonMATH
18.
go back to reference Gusarov AV, Smurov I (2002) Gas-dynamic boundary conditions of evaporation and condensation: numerical analysis of the Knudsen layer. Phys Fluids 14:4242–4255MathSciNetCrossRef Gusarov AV, Smurov I (2002) Gas-dynamic boundary conditions of evaporation and condensation: numerical analysis of the Knudsen layer. Phys Fluids 14:4242–4255MathSciNetCrossRef
19.
go back to reference Zudin YB (2015) Approximate kinetic analysis of intense evaporation. J Eng Phys Thermophys 88(4):1015–1022CrossRef Zudin YB (2015) Approximate kinetic analysis of intense evaporation. J Eng Phys Thermophys 88(4):1015–1022CrossRef
20.
go back to reference Zudin YB (2016) Linear kinetic analysis of evaporation and condensations. Thermophys Aeromech 23(3):437–449CrossRef Zudin YB (2016) Linear kinetic analysis of evaporation and condensations. Thermophys Aeromech 23(3):437–449CrossRef
Metadata
Title
Linear Kinetic Analysis of Evaporation and Condensation
Author
Yuri B. Zudin
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-13815-8_6

Premium Partners