Skip to main content
Top
Published in: Rheologica Acta 5-6/2008

01-07-2008 | Orginal Contribution

Linear viscoelasticity of styrenic block copolymers–clay nanocomposites

Authors: Danilo Justino Carastan, Nicole Raymonde Demarquette, Alexandre Vermogen, Karine Masenelli-Varlot

Published in: Rheologica Acta | Issue 5-6/2008

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, the rheological behavior of block copolymers with different morphologies (lamellar, cylindrical, spherical, and disordered) and their clay-containing nanocomposites was studied using small amplitude oscillatory shear. The copolymers studied were one asymmetric starblock styrene–butadiene–styrene copolymer and four styrene–ethylene/butylenes–styrene copolymers with different molecular architectures, one of them being modified with maleic anhydride. The nanocomposites of those copolymers were prepared by adding organophilic clay using three different preparation techniques: melt mixing, solution casting, and a hybrid melt mixing–solution technique. The nanocomposites were characterized by X-ray diffraction and transmission electron microscopy, and their viscoelastic properties were evaluated and compared to the ones of the pure copolymers. The influence of copolymer morphology and presence of clay on the storage modulus (G′) curves was studied by the evaluation of the changes in the low frequency slope of log G′× logω (ω: frequency) curves upon variation of temperature and clay addition. This slope may be related to the degree of liquid- or solid-like behavior of a material. It was observed that at temperatures corresponding to the ordered state, the rheological behavior of the nanocomposites depended mainly on the viscoelasticity of each type of ordered phase and the variation of the slope due to the addition of clay was small. For temperatures corresponding to the disordered state, however, the rheological behavior of the copolymer nanocomposites was dictated mostly by the degree of clay dispersion: When the clay was well dispersed, a strong solid-like behavior corresponding to large G′ slope variations was observed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adams LJ, Graessley WW, Register RA (1994) Rheology and the microphase separation transition in styrene–isoprene block copolymers. Macromolecules 27:6026–6032CrossRef Adams LJ, Graessley WW, Register RA (1994) Rheology and the microphase separation transition in styrene–isoprene block copolymers. Macromolecules 27:6026–6032CrossRef
go back to reference Adhikari R, Michler GH, Lebek W, Goerlitz S, Weidisch R, Knoll K (2002) Morphology and micromechanical deformation behavior of styrene/butadiene-block copolymers II. Influence of molecular architecture of asymmetric star block copolymers. J Appl Polym Sci 85:701–713CrossRef Adhikari R, Michler GH, Lebek W, Goerlitz S, Weidisch R, Knoll K (2002) Morphology and micromechanical deformation behavior of styrene/butadiene-block copolymers II. Influence of molecular architecture of asymmetric star block copolymers. J Appl Polym Sci 85:701–713CrossRef
go back to reference Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28:1–63CrossRef Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28:1–63CrossRef
go back to reference Almdal K, Bates FS, Mortensen KM (1992) Order, disorder, and fluctuation effects in an asymmetric poly(ethylene–propylene)-poly(ethylene) diblock copolymer. J Chem Phys 96:9122–9132CrossRef Almdal K, Bates FS, Mortensen KM (1992) Order, disorder, and fluctuation effects in an asymmetric poly(ethylene–propylene)-poly(ethylene) diblock copolymer. J Chem Phys 96:9122–9132CrossRef
go back to reference Carastan DJ, Demarquette NR (2006) Microstructure of nanocomposites of styrenic polymers. Macromol Symp 233:152–160CrossRef Carastan DJ, Demarquette NR (2006) Microstructure of nanocomposites of styrenic polymers. Macromol Symp 233:152–160CrossRef
go back to reference Carastan DJ, Demarquette NR (2007) Polystyrene/clay nanocomposites. Int Mater Rev 52:345–380CrossRef Carastan DJ, Demarquette NR (2007) Polystyrene/clay nanocomposites. Int Mater Rev 52:345–380CrossRef
go back to reference Choi S, Lee KM, Han CD (2004) Effects of triblock copolymer architecture and the degree of functionalization on the organoclay dispersion and rheology of nanocomposites. Macromolecules 37:7649–7662CrossRef Choi S, Lee KM, Han CD (2004) Effects of triblock copolymer architecture and the degree of functionalization on the organoclay dispersion and rheology of nanocomposites. Macromolecules 37:7649–7662CrossRef
go back to reference Fredrickson GH, Bates FS (1996) Dynamics of block copolymers: theory and experiment. Annu Rev Mater Sci 26:501–550CrossRef Fredrickson GH, Bates FS (1996) Dynamics of block copolymers: theory and experiment. Annu Rev Mater Sci 26:501–550CrossRef
go back to reference Gehlsen MD, Almdal K, Bates FS (1992) Order–disorder transition: diblock versus triblock copolymers. Macromolecules 25:939–943CrossRef Gehlsen MD, Almdal K, Bates FS (1992) Order–disorder transition: diblock versus triblock copolymers. Macromolecules 25:939–943CrossRef
go back to reference Ha Y-H, Thomas EL (2002) Deformation behavior of a roll-cast layered-silicate/lamellar triblock copolymer nanocomposite. Macromolecules 35:4419–4428CrossRef Ha Y-H, Thomas EL (2002) Deformation behavior of a roll-cast layered-silicate/lamellar triblock copolymer nanocomposite. Macromolecules 35:4419–4428CrossRef
go back to reference Ha Y-H, Kwon Y, Breiner T, Chan EP, Tzianetopoulou T, Cohen RE, Boyce MC, Thomas EL (2005) An orientationally ordered hierarchical exfoliated clay–block copolymer nanocomposite. Macromolecules 38:5170–5179CrossRef Ha Y-H, Kwon Y, Breiner T, Chan EP, Tzianetopoulou T, Cohen RE, Boyce MC, Thomas EL (2005) An orientationally ordered hierarchical exfoliated clay–block copolymer nanocomposite. Macromolecules 38:5170–5179CrossRef
go back to reference Hamley IW (1998) The physics of block copolymers. Oxford University Press, Oxford Hamley IW (1998) The physics of block copolymers. Oxford University Press, Oxford
go back to reference Han CD, Baek DM, Kim JK, Ogawa T, Sakamoto M, Hashimoto T (1995) Effect of volume fraction on the order–disorder transition in low molecular weight polystyrene-block- polyisoprene copolymers. 1. Order–disorder transition temperature determined by rheological measurements. Macromolecules 28:5043–5062CrossRef Han CD, Baek DM, Kim JK, Ogawa T, Sakamoto M, Hashimoto T (1995) Effect of volume fraction on the order–disorder transition in low molecular weight polystyrene-block- polyisoprene copolymers. 1. Order–disorder transition temperature determined by rheological measurements. Macromolecules 28:5043–5062CrossRef
go back to reference Hasegawa N, Usuki A (2003) Arranged microdomain structures induced by clay silicate layers in block copolymer–clay nanocomposites. Polym Bull 51:77–83CrossRef Hasegawa N, Usuki A (2003) Arranged microdomain structures induced by clay silicate layers in block copolymer–clay nanocomposites. Polym Bull 51:77–83CrossRef
go back to reference Knoll K, Niessner N (1998) Styrolux and styroflex—from transparent high impact polystyrene to new thermoplastic elastomers. Syntheses, applications and blends with other styrene based polymers. Macromol Symp 132:231–243 Knoll K, Niessner N (1998) Styrolux and styroflex—from transparent high impact polystyrene to new thermoplastic elastomers. Syntheses, applications and blends with other styrene based polymers. Macromol Symp 132:231–243
go back to reference Kossuth MB, Morse DC, Bates FS (1999) Viscoelastic behavior of cubic phases in block copolymer melts. J Rheol 43:167–196CrossRef Kossuth MB, Morse DC, Bates FS (1999) Viscoelastic behavior of cubic phases in block copolymer melts. J Rheol 43:167–196CrossRef
go back to reference Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8:1728–1734CrossRef Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8:1728–1734CrossRef
go back to reference Lai SM, Chen CM (2007) Preparation, structure, and properties of styrene–ethylene–butylene–styrene block copolymer/clay nanocomposites: part III. Effectiveness of compatibilizers. Eur Polym J 42:2254–2264CrossRef Lai SM, Chen CM (2007) Preparation, structure, and properties of styrene–ethylene–butylene–styrene block copolymer/clay nanocomposites: part III. Effectiveness of compatibilizers. Eur Polym J 42:2254–2264CrossRef
go back to reference Lee KM, Ha CD (2003) Linear dynamic viscoelasticity properties of functionalized block copolymer/organoclay nanocomposites. Macromolecules 36:804–815CrossRef Lee KM, Ha CD (2003) Linear dynamic viscoelasticity properties of functionalized block copolymer/organoclay nanocomposites. Macromolecules 36:804–815CrossRef
go back to reference Leibler L (1980) Theory of microphase separation in block copolymers. Macromolecules 13:1602–1617CrossRef Leibler L (1980) Theory of microphase separation in block copolymers. Macromolecules 13:1602–1617CrossRef
go back to reference Lu X, Steckle WP Jr, Hsiao B, Weiss RA (1995) Thermally induced microstructure transitions in a block copolymer ionomer. Macromolecules 28:2831–2839CrossRef Lu X, Steckle WP Jr, Hsiao B, Weiss RA (1995) Thermally induced microstructure transitions in a block copolymer ionomer. Macromolecules 28:2831–2839CrossRef
go back to reference Mauritz KA, Blackwell RI, Beyer FL (2004) Viscoelastic properties and morphology of sulfonated poly(styrene-b-ethylene/ butylene-b-styrene) block copolymers (sBCP), and sBCP/ [silicate] nanostructured materials. Polymer 45:3001–3016CrossRef Mauritz KA, Blackwell RI, Beyer FL (2004) Viscoelastic properties and morphology of sulfonated poly(styrene-b-ethylene/ butylene-b-styrene) block copolymers (sBCP), and sBCP/ [silicate] nanostructured materials. Polymer 45:3001–3016CrossRef
go back to reference Michler GH, Adhikari R, Lebek W, Goerlitz S, Weidisch R, Knoll K (2002) Morphology and micromechanical deformation behavior of styrene/butadiene-block copolymers. I. Toughening mechanisms in asymmetric star block copolymers. J Appl Polym Sci 85:683–700CrossRef Michler GH, Adhikari R, Lebek W, Goerlitz S, Weidisch R, Knoll K (2002) Morphology and micromechanical deformation behavior of styrene/butadiene-block copolymers. I. Toughening mechanisms in asymmetric star block copolymers. J Appl Polym Sci 85:683–700CrossRef
go back to reference Mitchell CA, Krishnamoorti R (2002) Rheological properties of diblock copolymer / layered silicate nanocomposites. J Polym Sci, Part B: Polym Phys 40:1434–1443CrossRef Mitchell CA, Krishnamoorti R (2002) Rheological properties of diblock copolymer / layered silicate nanocomposites. J Polym Sci, Part B: Polym Phys 40:1434–1443CrossRef
go back to reference Modi MA, Krishnamoorti R, Tse MF, Wang H-C (1999) Viscoelastic characterization of an order–order transition in a mixture of di- and triblock copolymers. Macromolecules 32:4088–4097CrossRef Modi MA, Krishnamoorti R, Tse MF, Wang H-C (1999) Viscoelastic characterization of an order–order transition in a mixture of di- and triblock copolymers. Macromolecules 32:4088–4097CrossRef
go back to reference Park CI, Park OO, Lim JG, Kim HJ (2001) The fabrication of syndiotactic polystyrene/organophilic clay nanocomposites and their properties. Polymer 42:7465–7475CrossRef Park CI, Park OO, Lim JG, Kim HJ (2001) The fabrication of syndiotactic polystyrene/organophilic clay nanocomposites and their properties. Polymer 42:7465–7475CrossRef
go back to reference Ren J, Silva AS, Krishnamoorti R (2000) Linear viscoelasticity of disordered polystyrene–polyisoprene block copolymer based layered-silicate nanocomposites. Macromolecules 33:3739–3746CrossRef Ren J, Silva AS, Krishnamoorti R (2000) Linear viscoelasticity of disordered polystyrene–polyisoprene block copolymer based layered-silicate nanocomposites. Macromolecules 33:3739–3746CrossRef
go back to reference Rosedale JH, Bates FS (1990) Rheology of ordered and disordered symmetric poly(ethylenepropylene)–poly(ethylethylene) diblock copolymers. Macromolecules 23:2329–2338CrossRef Rosedale JH, Bates FS (1990) Rheology of ordered and disordered symmetric poly(ethylenepropylene)–poly(ethylethylene) diblock copolymers. Macromolecules 23:2329–2338CrossRef
go back to reference Saito T, Okamoto M, Hiroi R, Yamamoto M, Shiroi T (2006) Intercalation of diphenyl sulfide into nanogalleries and preparation of poly(p-phenylenesulfide)-based nanocomposites. Macromol Mater Eng 291:1367–1374CrossRef Saito T, Okamoto M, Hiroi R, Yamamoto M, Shiroi T (2006) Intercalation of diphenyl sulfide into nanogalleries and preparation of poly(p-phenylenesulfide)-based nanocomposites. Macromol Mater Eng 291:1367–1374CrossRef
go back to reference Silva AS, Mitchell CA, Tse MF, Wang H-C, Krishnamoorti R (2001) Templating of cylindrical and spherical block copolymer microdomains by layered silicates. J Chem Phys 115:7166–7174CrossRef Silva AS, Mitchell CA, Tse MF, Wang H-C, Krishnamoorti R (2001) Templating of cylindrical and spherical block copolymer microdomains by layered silicates. J Chem Phys 115:7166–7174CrossRef
go back to reference Vermogen A, Masenelli-Varlot K, Séguéla R, Duchet-Rumeau J, Boucard S, Prele P (2005) Evaluation of the structure and dispersion in polymer-layered silicate nanocomposites. Macromolecules 38:9661CrossRef Vermogen A, Masenelli-Varlot K, Séguéla R, Duchet-Rumeau J, Boucard S, Prele P (2005) Evaluation of the structure and dispersion in polymer-layered silicate nanocomposites. Macromolecules 38:9661CrossRef
go back to reference Zhao J, Morgan AB, Harris JD (2005) Rheological characterization of polystyrene–clay nanocomposites to compare the degree of exfoliation and dispersion. Polymer 46:8641–8660 Zhao J, Morgan AB, Harris JD (2005) Rheological characterization of polystyrene–clay nanocomposites to compare the degree of exfoliation and dispersion. Polymer 46:8641–8660
Metadata
Title
Linear viscoelasticity of styrenic block copolymers–clay nanocomposites
Authors
Danilo Justino Carastan
Nicole Raymonde Demarquette
Alexandre Vermogen
Karine Masenelli-Varlot
Publication date
01-07-2008
Publisher
Springer-Verlag
Published in
Rheologica Acta / Issue 5-6/2008
Print ISSN: 0035-4511
Electronic ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-008-0283-2

Other articles of this Issue 5-6/2008

Rheologica Acta 5-6/2008 Go to the issue

Premium Partners