Skip to main content
Top

2017 | OriginalPaper | Chapter

4. Literature Review

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents the literature review on liquid viscosity measurement by means of ultrasonic plane waves. The purpose of this review is to provide the knowledge of the current state of the art in ultrasonic plane waves viscometry. Several techniques have been developed to study viscosity with ultrasound. The first part of the literature review analyses these methods. They may be recapped in the following categories: crystal and rod resonators, the speed of sound and attenuation techniques, spectroscopy and the reflectance technique. In this review the advantages, applications and the limitations of each method are analysed. The second part of the literature reports how these techniques have been used to analyse lubricating oils. The review provides also a comparison between the ultrasonic viscometers and the conventional viscometers. Finally, the considerations on the limits of the literature methods are used to point out the direction undertaken in this research to design a novel ultrasonic viscometer for in situ applications in journal bearings.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference D.R. Augenstein, et al., Method and apparatus for determining the viscosity of a fluid in a container. US Patent Number CA2258329, 1999 D.R. Augenstein, et al., Method and apparatus for determining the viscosity of a fluid in a container. US Patent Number CA2258329, 1999
go back to reference S. Bair, et al., Oscillatory and steady shear viscosity: The Cox–Merz rule, superposition, and application to EHL friction. Tribol. Int. 79, 126–131 (2014) S. Bair, et al., Oscillatory and steady shear viscosity: The Cox–Merz rule, superposition, and application to EHL friction. Tribol. Int. 79, 126–131 (2014)
go back to reference A.J. Barlow, J. Lamb, The visco-elastic behaviour of lubricating oils under cyclic shearing stress. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol 253, no 1272, The Royal Society, 1959 A.J. Barlow, J. Lamb, The visco-elastic behaviour of lubricating oils under cyclic shearing stress. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol 253, no 1272, The Royal Society, 1959
go back to reference R. Behrends, U. Kaatze, A high frequency shear wave impedance spectrometer for low viscosity liquids. Measur. Sci. Technol. 12(4), 519 (2001) R. Behrends, U. Kaatze, A high frequency shear wave impedance spectrometer for low viscosity liquids. Measur. Sci. Technol. 12(4), 519 (2001)
go back to reference F. Buiochi, R.T. Higuti, C.M. Furukawa, in Ultrasonic Measurement of Viscosity of Liquids. IEEE Ultrasonics Symposium, vol. 1, pp. 525–528 (2000) F. Buiochi, R.T. Higuti, C.M. Furukawa, in Ultrasonic Measurement of Viscosity of Liquids. IEEE Ultrasonics Symposium, vol. 1, pp. 525–528 (2000)
go back to reference M.R. Bujard, Method of measuring the dynamic viscosity of a viscous fluid utilizing acoustic transducer. U.S Patent Number 04862384, 1989 M.R. Bujard, Method of measuring the dynamic viscosity of a viscous fluid utilizing acoustic transducer. U.S Patent Number 04862384, 1989
go back to reference F. Cohen-Tenoudji, et al., High temperature ultrasonic viscometer. US Patent Number 4779452. 25 October, 1988 F. Cohen-Tenoudji, et al., High temperature ultrasonic viscometer. US Patent Number 4779452. 25 October, 1988
go back to reference W.P. Cox, E.H. Merz, Correlation of dynamic and steady flow viscosities. J. Polym. Sci. 28(118), 619–622 (1958)CrossRef W.P. Cox, E.H. Merz, Correlation of dynamic and steady flow viscosities. J. Polym. Sci. 28(118), 619–622 (1958)CrossRef
go back to reference D. Dowson, A generalized Reynolds equation for fluid-film lubrication. Int. J. Mech. Sci. 4(2), 159–170 (1962) D. Dowson, A generalized Reynolds equation for fluid-film lubrication. Int. J. Mech. Sci. 4(2), 159–170 (1962)
go back to reference A.S. Dukhin, P.J. Goetz, Bulk viscosity and compressibility measurement using acoustic spectroscopy. J. Chem. Phys. 130(12), 124519 (2009) A.S. Dukhin, P.J. Goetz, Bulk viscosity and compressibility measurement using acoustic spectroscopy. J. Chem. Phys. 130(12), 124519 (2009)
go back to reference A. Dyson, Frictional traction and lubricant rheology in elastohydrodynamic lubrication. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 266(1170), 1–33 (1970) A. Dyson, Frictional traction and lubricant rheology in elastohydrodynamic lubrication. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 266(1170), 1–33 (1970)
go back to reference F. Eggers, T. Funk, Ultrasonic measurements with milliliter liquid sample in the 0.5–100 MHz range. Rev. Sci. Instrum. 44, 969–976 (1973) F. Eggers, T. Funk, Ultrasonic measurements with milliliter liquid sample in the 0.5–100 MHz range. Rev. Sci. Instrum. 44, 969–976 (1973)
go back to reference W.A. Farone, et al., Acoustic viscometer and method of determining kinematic viscosity and intrinsic viscosity by propagation of shear waves. U.S. Patent Number 6439034, 2002 W.A. Farone, et al., Acoustic viscometer and method of determining kinematic viscosity and intrinsic viscosity by propagation of shear waves. U.S. Patent Number 6439034, 2002
go back to reference E.E. Franco, et al., Viscosity measurement of Newtonian liquids using the complex reflection coefficient. IEEE Trans. Ultrason. Ferroelectri. Freq. Control. 55(10) (2008) E.E. Franco, et al., Viscosity measurement of Newtonian liquids using the complex reflection coefficient. IEEE Trans. Ultrason. Ferroelectri. Freq. Control. 55(10) (2008)
go back to reference M.S. Greenwood, et al., On-line ultrasonic density sensor for process control of liquids and slurries. Ultrasonics 37(2), 159–171 (1999) M.S. Greenwood, et al., On-line ultrasonic density sensor for process control of liquids and slurries. Ultrasonics 37(2), 159–171 (1999)
go back to reference M.S. Greenwood, Self calibrating apparatus and method for ultrasonic determination of fluid properties. U.S. Patent Number CA2479119, 2003 M.S. Greenwood, Self calibrating apparatus and method for ultrasonic determination of fluid properties. U.S. Patent Number CA2479119, 2003
go back to reference M.S. Greenwood, J.A. Bamberger, Measurement of viscosity and shear wave velocity of a liquid or slurry for on-line process control. Ultrasonics 39(9), 623–630 (2002) M.S. Greenwood, J.A. Bamberger, Measurement of viscosity and shear wave velocity of a liquid or slurry for on-line process control. Ultrasonics 39(9), 623–630 (2002)
go back to reference R.J. Hinrichs, Method for determining resin viscosity with ultrasonic waves. U.S. Patent Number 4559810, 1985 R.J. Hinrichs, Method for determining resin viscosity with ultrasonic waves. U.S. Patent Number 4559810, 1985
go back to reference H. Ju, E.J. Gottlieb, D.R. Augenstein, et al., in An Empirical Method to Estimate the Viscosity of Mineral Oil by Means of Ultrasonic Attenuation. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol 57, no 7, pp. 1612–1620 (2010) H. Ju, E.J. Gottlieb, D.R. Augenstein, et al., in An Empirical Method to Estimate the Viscosity of Mineral Oil by Means of Ultrasonic Attenuation. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol 57, no 7, pp. 1612–1620 (2010)
go back to reference S. Kasolang, R.S. Dwyer-Joyce, Viscosity measurement in thin lubricant films using shear ultrasonic reflection. Proc. Inst. Mech. Eng. Part J: J. Eng. Trib. 222(3), 423–429 (2008) S. Kasolang, R.S. Dwyer-Joyce, Viscosity measurement in thin lubricant films using shear ultrasonic reflection. Proc. Inst. Mech. Eng. Part J: J. Eng. Trib. 222(3), 423–429 (2008)
go back to reference J.J. Kauzlarich, Electronic viscometer. U.S. Patent Number 5571952, 1996 J.J. Kauzlarich, Electronic viscometer. U.S. Patent Number 5571952, 1996
go back to reference J.O. Kim, H.H. Bau, Instrument for simultaneous measurement of density and viscosity. Rev. Sci. Instrum. 60, 1111–1115 (1988)CrossRef J.O. Kim, H.H. Bau, Instrument for simultaneous measurement of density and viscosity. Rev. Sci. Instrum. 60, 1111–1115 (1988)CrossRef
go back to reference J. Lamb, Physical properties of fluid lubricants: rheological and viscoelastic behaviour. Proc. Inst. Mech. Eng., Conf. 182, 293–310 (1967) J. Lamb, Physical properties of fluid lubricants: rheological and viscoelastic behaviour. Proc. Inst. Mech. Eng., Conf. 182, 293–310 (1967)
go back to reference H.M. Laun, Prediction of elastic strains of polymer melts in shear and elongation. J. Rheol. 30, 459–501 (1986)CrossRef H.M. Laun, Prediction of elastic strains of polymer melts in shear and elongation. J. Rheol. 30, 459–501 (1986)CrossRef
go back to reference W.P. Mason, Viscosity and shear elasticity measurements of liquids by means of shear vibrating crystals. J. Colloid Sci. 3(2), 147–162 (1948) W.P. Mason, Viscosity and shear elasticity measurements of liquids by means of shear vibrating crystals. J. Colloid Sci. 3(2), 147–162 (1948)
go back to reference W. Roth, S. Rich, A New Method for Continuous Viscosity Measurement. General Theory of the Ultra‐Viscoson. J. Appl. Phys. 24(7), 940–950 (1953)CrossRef W. Roth, S. Rich, A New Method for Continuous Viscosity Measurement. General Theory of the Ultra‐Viscoson. J. Appl. Phys. 24(7), 940–950 (1953)CrossRef
go back to reference V. Shah, K. Balasubramaniam, Effect of viscosity on ultrasound wave reflection from a solid/liquid interface. Ultrasonics 34(8), 817−824 (1996) V. Shah, K. Balasubramaniam, Effect of viscosity on ultrasound wave reflection from a solid/liquid interface. Ultrasonics 34(8), 817−824 (1996)
go back to reference V. Sharma, G.H. McKinley, An intriguing empirical rule for computing the first normal stress difference from steady shear viscosity data for concentrated polymer solutions and melts. Rheol. Acta 51(6), 487–495 (2012) V. Sharma, G.H. McKinley, An intriguing empirical rule for computing the first normal stress difference from steady shear viscosity data for concentrated polymer solutions and melts. Rheol. Acta 51(6), 487–495 (2012)
go back to reference S.H. Sheen, et al., Method for measuring liquid viscosity and ultrasonic viscometer. U.S. Patent Number 5365778, 22 November, 1994 S.H. Sheen, et al., Method for measuring liquid viscosity and ultrasonic viscometer. U.S. Patent Number 5365778, 22 November, 1994
go back to reference C. Verdier, P.Y Longin, M. Piau, Dynamic shear and compressional behavior of polydimethylsiloxanes: ultrasonic and low frequency characterization. Rheol. Acta 37(3), 234–244 (1998) C. Verdier, P.Y Longin, M. Piau, Dynamic shear and compressional behavior of polydimethylsiloxanes: ultrasonic and low frequency characterization. Rheol. Acta 37(3), 234–244 (1998)
go back to reference J.G. Woodward, A vibrating plate viscometer. J. Acoust. Soc. Am. 25, 147–151 (1953)CrossRef J.G. Woodward, A vibrating plate viscometer. J. Acoust. Soc. Am. 25, 147–151 (1953)CrossRef
go back to reference Y.H. Wen et al., An experimental appraisal of the Cox-Merz rule and Laun’s rule based on bidisperse entangled polystyrene solutions. J. Polym. 45, 8851–8859 (2004) Y.H. Wen et al., An experimental appraisal of the Cox-Merz rule and Laun’s rule based on bidisperse entangled polystyrene solutions. J. Polym. 45, 8851–8859 (2004)
Metadata
Title
Literature Review
Author
Michele Schirru
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-53408-4_4

Premium Partners