Skip to main content
Top

2019 | OriginalPaper | Chapter

2. Literature Review

Authors : Md Eshrat E Alahi, Subhas Chandra Mukhopadhyay

Published in: Smart Nitrate Sensor

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

There are various detection methods are available for nitrate detection in water. Some of them are laboratory-based methods, some can perform in situ measurement. Some of the detection methods are conventional, some of them are non-conventional methods. All the detection methods are some advantages and drawbacks. The price of the detection methods are also important and needs to consider during measurement. This chapter discusses all the available methods and their characteristics in terms of advantages, limit of detections, detection methods, drawbacks, cost and important features.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. Andreoli et al., Electrochemical conversion of copper-based hierarchical micro/nanostructures to copper metal nanoparticles and their testing in nitrate sensing. Electroanalysis 23(9), 2164–2173 (2011)CrossRef E. Andreoli et al., Electrochemical conversion of copper-based hierarchical micro/nanostructures to copper metal nanoparticles and their testing in nitrate sensing. Electroanalysis 23(9), 2164–2173 (2011)CrossRef
2.
go back to reference S. Aravamudhan, S. Bhansali, Development of micro-fluidic nitrate-selective sensor based on doped-polypyrrole nanowires. Sens. Actuators B Chem. 132(2), 623–630 (2008)CrossRef S. Aravamudhan, S. Bhansali, Development of micro-fluidic nitrate-selective sensor based on doped-polypyrrole nanowires. Sens. Actuators B Chem. 132(2), 623–630 (2008)CrossRef
3.
go back to reference F. Can, S.K. Ozoner, P. Ergenekon, E. Erhan, Amperometric nitrate biosensor based on carbon nanotube/polypyrrole/nitrate reductase biofilm electrode. Mater. Sci. Eng., C 32(1), 18–23 (2012)CrossRef F. Can, S.K. Ozoner, P. Ergenekon, E. Erhan, Amperometric nitrate biosensor based on carbon nanotube/polypyrrole/nitrate reductase biofilm electrode. Mater. Sci. Eng., C 32(1), 18–23 (2012)CrossRef
4.
go back to reference S.S. Hassan, Ion-selective electrodes in organic functional group analysis: Microdetermination of nitrates and nitramines with use of the iodide electrode. Talanta 23(10), 738–740 (1976)CrossRef S.S. Hassan, Ion-selective electrodes in organic functional group analysis: Microdetermination of nitrates and nitramines with use of the iodide electrode. Talanta 23(10), 738–740 (1976)CrossRef
5.
go back to reference M.O. Mendoza, E.P. Ortega, O.A. de Fuentes, Y. Prokhorov, J.G.L. Barcenas, Chitosan/bentonite nanocomposite: preliminary studies of its potentiometric response to nitrate ions in water, in 2014 IEEE 9th Ibero-American Congress on Sensors (IBERSENSOR) (IEEE, 2014); pp. 1–4 M.O. Mendoza, E.P. Ortega, O.A. de Fuentes, Y. Prokhorov, J.G.L. Barcenas, Chitosan/bentonite nanocomposite: preliminary studies of its potentiometric response to nitrate ions in water, in 2014 IEEE 9th Ibero-American Congress on Sensors (IBERSENSOR) (IEEE, 2014); pp. 1–4
6.
go back to reference R.K. Mahajan, R. Kaur, H. Miyake, H. Tsukube, Zn (II) complex-based potentiometric sensors for selective determination of nitrate anion. Anal. Chim. Acta 584(1), 89–94 (2007)CrossRef R.K. Mahajan, R. Kaur, H. Miyake, H. Tsukube, Zn (II) complex-based potentiometric sensors for selective determination of nitrate anion. Anal. Chim. Acta 584(1), 89–94 (2007)CrossRef
7.
go back to reference C. Li, L. Li, Prediction of nitrate and chlorine in soil using ion selective electrode, in World Automation Congress (WAC) (IEEE, 2010),pp. 231–234 C. Li, L. Li, Prediction of nitrate and chlorine in soil using ion selective electrode, in World Automation Congress (WAC) (IEEE, 2010),pp. 231–234
8.
go back to reference L. Nuñez, X. Cetó, M.I. Pividori, M.V.B. Zanoni, M. Del Valle, Development and application of an electronic tongue for detection and monitoring of nitrate, nitrite and ammonium levels in waters. Microchem. J. 110, 273–279 (2013)CrossRef L. Nuñez, X. Cetó, M.I. Pividori, M.V.B. Zanoni, M. Del Valle, Development and application of an electronic tongue for detection and monitoring of nitrate, nitrite and ammonium levels in waters. Microchem. J. 110, 273–279 (2013)CrossRef
9.
go back to reference T.A. Bendikov, T.C. Harmon, A sensitive nitrate ion-selective electrode from a pencil lead. An analytical laboratory experiment. J. Chem. Educ. 82(3), 439 (2005)CrossRef T.A. Bendikov, T.C. Harmon, A sensitive nitrate ion-selective electrode from a pencil lead. An analytical laboratory experiment. J. Chem. Educ. 82(3), 439 (2005)CrossRef
10.
go back to reference L. Zhang, M. Zhang, H. Ren, P. Pu, P. Kong, H. Zhao, Comparative investigation on soil nitrate-nitrogen and available potassium measurement capability by using solid-state and PVC ISE. Comput. Electron. Agric. 112, 83–91 (2015)CrossRef L. Zhang, M. Zhang, H. Ren, P. Pu, P. Kong, H. Zhao, Comparative investigation on soil nitrate-nitrogen and available potassium measurement capability by using solid-state and PVC ISE. Comput. Electron. Agric. 112, 83–91 (2015)CrossRef
11.
go back to reference C. Wardak, Solid Contact Nitrate Ion-Selective Electrode Based on Ionic Liquid with Stable and Reproducible Potential. Electroanalysis 26(4), 864–872 (2014)CrossRef C. Wardak, Solid Contact Nitrate Ion-Selective Electrode Based on Ionic Liquid with Stable and Reproducible Potential. Electroanalysis 26(4), 864–872 (2014)CrossRef
12.
go back to reference A. Calvo-López, E. Arasa-Puig, M. Puyol, J.M. Casalta, J. Alonso-Chamarro, Biparametric potentiometric analytical microsystem for nitrate and potassium monitoring in water recycling processes for manned space missions. Anal. Chim. Acta 804, 190–196 (2013)CrossRef A. Calvo-López, E. Arasa-Puig, M. Puyol, J.M. Casalta, J. Alonso-Chamarro, Biparametric potentiometric analytical microsystem for nitrate and potassium monitoring in water recycling processes for manned space missions. Anal. Chim. Acta 804, 190–196 (2013)CrossRef
13.
go back to reference S.S. Hassan, H. Sayour, S.S. Al-Mehrezi, A novel planar miniaturized potentiometric sensor for flow injection analysis of nitrates in wastewaters, fertilizers and pharmaceuticals. Anal. Chim. Acta 581(1), 13–18 (2007)CrossRef S.S. Hassan, H. Sayour, S.S. Al-Mehrezi, A novel planar miniaturized potentiometric sensor for flow injection analysis of nitrates in wastewaters, fertilizers and pharmaceuticals. Anal. Chim. Acta 581(1), 13–18 (2007)CrossRef
14.
go back to reference P.T. Kissinger, T.H. Ridgway, Small-amplitude controlled-potential techniques, in Laboratory Techniques in Electroanalytical Chemistry, Revised and Expanded (1996), p. 141CrossRef P.T. Kissinger, T.H. Ridgway, Small-amplitude controlled-potential techniques, in Laboratory Techniques in Electroanalytical Chemistry, Revised and Expanded (1996), p. 141CrossRef
15.
go back to reference R.A. Wallingford, A.G. Ewing, Capillary zone electrophoresis with electrochemical detection. Anal. Chem. 59(14), 1762–1766 (1987)CrossRef R.A. Wallingford, A.G. Ewing, Capillary zone electrophoresis with electrochemical detection. Anal. Chem. 59(14), 1762–1766 (1987)CrossRef
16.
go back to reference S. Sloss, A.G. Ewing, Improved method for end-column amperometric detection for capillary electrophoresis. Anal. Chem. 65(5), 577–581 (1993)CrossRef S. Sloss, A.G. Ewing, Improved method for end-column amperometric detection for capillary electrophoresis. Anal. Chem. 65(5), 577–581 (1993)CrossRef
17.
go back to reference J. Wang, Analytical Electrochemistry (Wiley, London, 2006) J. Wang, Analytical Electrochemistry (Wiley, London, 2006)
18.
go back to reference T.J. Roussel, D.J. Jackson, R.P. Baldwin, R.S. Keynton, Amperometric Techniques, in Encyclopedia of Microfluidics and Nanofluidics (2013), pp. 1–11, 2013 T.J. Roussel, D.J. Jackson, R.P. Baldwin, R.S. Keynton, Amperometric Techniques, in Encyclopedia of Microfluidics and Nanofluidics (2013), pp. 1–11, 2013
19.
go back to reference N.G. Carpenter, D. Pletcher, Amperometric method for the determination of nitrate in water. Anal. Chim. Acta 317(1–3), 287–293 (1995)CrossRef N.G. Carpenter, D. Pletcher, Amperometric method for the determination of nitrate in water. Anal. Chim. Acta 317(1–3), 287–293 (1995)CrossRef
20.
go back to reference X.-L. Zhang, J.-X. Wang, Z. Wang, S.-C. Wang, Improvement of amperometric sensor used for determination of nitrate with polypyrrole nanowires modified electrode. Sensors 5(12), 580–593 (2005)CrossRef X.-L. Zhang, J.-X. Wang, Z. Wang, S.-C. Wang, Improvement of amperometric sensor used for determination of nitrate with polypyrrole nanowires modified electrode. Sensors 5(12), 580–593 (2005)CrossRef
21.
go back to reference J.R.C. da Rocha, L. Angnes, M. Bertotti, K. Araki, H.E. Toma, Amperometric detection of nitrite and nitrate at tetraruthenated porphyrin-modified electrodes in a continuous-flow assembly. Anal. Chim. Acta 452(1), 23–28 (2002)CrossRef J.R.C. da Rocha, L. Angnes, M. Bertotti, K. Araki, H.E. Toma, Amperometric detection of nitrite and nitrate at tetraruthenated porphyrin-modified electrodes in a continuous-flow assembly. Anal. Chim. Acta 452(1), 23–28 (2002)CrossRef
22.
go back to reference J.E. Newbery, M.P.L. de Haddad, Amperometric determination of nitrite by oxidation at a glassy carbon electrode. Analyst 110(1), 81–82 (1985)CrossRef J.E. Newbery, M.P.L. de Haddad, Amperometric determination of nitrite by oxidation at a glassy carbon electrode. Analyst 110(1), 81–82 (1985)CrossRef
23.
go back to reference M.A. Stanley et al., Comparison of the analytical capabilities of an amperometric and an optical sensor for the determination of nitrate in river and well water. Anal. Chim. Acta 299(1), 81–90 (1994)CrossRef M.A. Stanley et al., Comparison of the analytical capabilities of an amperometric and an optical sensor for the determination of nitrate in river and well water. Anal. Chim. Acta 299(1), 81–90 (1994)CrossRef
24.
go back to reference J.C. Gamboa, R.C. Pena, T.R. Paixão, M. Bertotti, A renewable copper electrode as an amperometric flow detector for nitrate determination in mineral water and soft drink samples. Talanta 80(2), 581–585 (2009)CrossRef J.C. Gamboa, R.C. Pena, T.R. Paixão, M. Bertotti, A renewable copper electrode as an amperometric flow detector for nitrate determination in mineral water and soft drink samples. Talanta 80(2), 581–585 (2009)CrossRef
25.
go back to reference A. Hulanicki, W. Matuszewski, M. Trojanowicz, Flow-injection determination of nitrite and nitrate with biamperometric detection at two platinum wire electrodes. Anal. Chim. Acta 194, 119–127 (1987)CrossRef A. Hulanicki, W. Matuszewski, M. Trojanowicz, Flow-injection determination of nitrite and nitrate with biamperometric detection at two platinum wire electrodes. Anal. Chim. Acta 194, 119–127 (1987)CrossRef
26.
go back to reference G.A. Sherwood, D.C. Johnson, A chromatographic determination of nitrate with amperometric detection at a copperized cadmium electrode. Anal. Chim. Acta 129, 101–111 (1981)CrossRef G.A. Sherwood, D.C. Johnson, A chromatographic determination of nitrate with amperometric detection at a copperized cadmium electrode. Anal. Chim. Acta 129, 101–111 (1981)CrossRef
27.
go back to reference S.A. Glazier, E.R. Campbell, W.H. Campbell, Construction and characterization of nitrate reductase-based amperometric electrode and nitrate assay of fertilizers and drinking water. Anal. Chem. 70(8), 1511–1515 (1998)CrossRef S.A. Glazier, E.R. Campbell, W.H. Campbell, Construction and characterization of nitrate reductase-based amperometric electrode and nitrate assay of fertilizers and drinking water. Anal. Chem. 70(8), 1511–1515 (1998)CrossRef
28.
go back to reference A.Y. Chamsi, A.G. Fogg, Oxidative flow injection amperometric determination of nitrite at an electrochemically pre-treated glassy carbon electrode. Analyst 113(11), 1723–1727 (1988)CrossRef A.Y. Chamsi, A.G. Fogg, Oxidative flow injection amperometric determination of nitrite at an electrochemically pre-treated glassy carbon electrode. Analyst 113(11), 1723–1727 (1988)CrossRef
29.
go back to reference M. Bertotti, D. Pletcher, Amperometric determination of nitrite via reaction with iodide using microelectrodes. Anal. Chim. Acta 337(1), 49–55 (1997)CrossRef M. Bertotti, D. Pletcher, Amperometric determination of nitrite via reaction with iodide using microelectrodes. Anal. Chim. Acta 337(1), 49–55 (1997)CrossRef
30.
go back to reference M.A. Alawi, Determination of nitrate and nitrite in water with HPLC and amperometric detection. Fresenius’ J. Anal. Chem. 313(3), 239–240 (1982)CrossRef M.A. Alawi, Determination of nitrate and nitrite in water with HPLC and amperometric detection. Fresenius’ J. Anal. Chem. 313(3), 239–240 (1982)CrossRef
31.
go back to reference M.E. Bodini, D.T. Sawyer, Voltammetric determination of nitrate ion at parts-per-billion levels. Anal. Chem. 49(3), 485–489 (1977)CrossRef M.E. Bodini, D.T. Sawyer, Voltammetric determination of nitrate ion at parts-per-billion levels. Anal. Chem. 49(3), 485–489 (1977)CrossRef
32.
go back to reference R.J. Davenport, D.C. Johnson, Voltammetric determination of nitrate and nitrite ions using a rotating cadmium disk electrode. Anal. Chem. 45(11), 1979–1980 (1973)CrossRef R.J. Davenport, D.C. Johnson, Voltammetric determination of nitrate and nitrite ions using a rotating cadmium disk electrode. Anal. Chem. 45(11), 1979–1980 (1973)CrossRef
33.
go back to reference J. Krista, M. Kopanica, L. Novotný, Voltammetric determination of nitrates using silver electrodes. Electroanal. Int. J. Fundamental Practical Aspects Electroanal. 12(3), 199–204 (2000)CrossRef J. Krista, M. Kopanica, L. Novotný, Voltammetric determination of nitrates using silver electrodes. Electroanal. Int. J. Fundamental Practical Aspects Electroanal. 12(3), 199–204 (2000)CrossRef
34.
go back to reference S.M. Shariar, T. Hinoue, Simultaneous voltammetric determination of nitrate and nitrite ions using a copper electrode pretreated by dissolution/redeposition. Anal. Sci. 26(11), 1173–1179 (2010)CrossRef S.M. Shariar, T. Hinoue, Simultaneous voltammetric determination of nitrate and nitrite ions using a copper electrode pretreated by dissolution/redeposition. Anal. Sci. 26(11), 1173–1179 (2010)CrossRef
35.
go back to reference V. Mareček, H. Jänchenová, Z. Samec, M. Březina, Voltammetric determination of nitrate, perchlorate and iodide at a hanging electrolyte drop electrode. Anal. Chim. Acta 185, 359–362 (1986)CrossRef V. Mareček, H. Jänchenová, Z. Samec, M. Březina, Voltammetric determination of nitrate, perchlorate and iodide at a hanging electrolyte drop electrode. Anal. Chim. Acta 185, 359–362 (1986)CrossRef
36.
go back to reference C. Neuhold, K. Kalcher, W. Diewald, X. Cai, G. Raber, Voltammetric determination of nitrate with a modified carbon paste electrode. Electroanalysis 6(3), 227–236 (1994)CrossRef C. Neuhold, K. Kalcher, W. Diewald, X. Cai, G. Raber, Voltammetric determination of nitrate with a modified carbon paste electrode. Electroanalysis 6(3), 227–236 (1994)CrossRef
37.
go back to reference A.O. Solak, P. Gülser, E. Gökm, F. Gökmesşe, A new differential pulse voltammetric method for the determination of nitrate at a copper plated glassy carbon electrode. Microchim. Acta 134(1–2), 77–82 (2000)CrossRef A.O. Solak, P. Gülser, E. Gökm, F. Gökmesşe, A new differential pulse voltammetric method for the determination of nitrate at a copper plated glassy carbon electrode. Microchim. Acta 134(1–2), 77–82 (2000)CrossRef
38.
go back to reference A. Osman Solak, P. Çekirdek, Square wave voltammetric determination of nitrate at a freshly copper plated glassy carbon electrode. Anal. Lett. 38(2), 271–280 (2005)CrossRef A. Osman Solak, P. Çekirdek, Square wave voltammetric determination of nitrate at a freshly copper plated glassy carbon electrode. Anal. Lett. 38(2), 271–280 (2005)CrossRef
39.
go back to reference A. Jang, Z. Zou, K.K. Lee, C.H. Ahn, P.L. Bishop, Potentiometric and voltammetric polymer lab chip sensors for determination of nitrate, pH and Cd (II) in water. Talanta 83(1), 1–8 (2010)CrossRef A. Jang, Z. Zou, K.K. Lee, C.H. Ahn, P.L. Bishop, Potentiometric and voltammetric polymer lab chip sensors for determination of nitrate, pH and Cd (II) in water. Talanta 83(1), 1–8 (2010)CrossRef
40.
go back to reference C. Lopez-Moreno, I.V. Perez, A.M. Urbano, Development and validation of an ionic chromatography method for the determination of nitrate, nitrite and chloride in meat. Food Chem. 194, 687–694 (2016)CrossRef C. Lopez-Moreno, I.V. Perez, A.M. Urbano, Development and validation of an ionic chromatography method for the determination of nitrate, nitrite and chloride in meat. Food Chem. 194, 687–694 (2016)CrossRef
41.
go back to reference H. Kodamatani, S. Yamazaki, K. Saito, T. Tomiyasu, Y. Komatsu, Selective determination method for measurement of nitrite and nitrate in water samples using high-performance liquid chromatography with post-column photochemical reaction and chemiluminescence detection. J. Chromatogr. A 1216(15), 3163–3167 (2009)CrossRef H. Kodamatani, S. Yamazaki, K. Saito, T. Tomiyasu, Y. Komatsu, Selective determination method for measurement of nitrite and nitrate in water samples using high-performance liquid chromatography with post-column photochemical reaction and chemiluminescence detection. J. Chromatogr. A 1216(15), 3163–3167 (2009)CrossRef
42.
go back to reference M.R. Siddiqui, S.M. Wabaidur, Z.A. ALOthman, M. Rafiquee, Rapid and sensitive method for analysis of nitrate in meat samples using ultra performance liquid chromatography–mass spectrometry. Spectrochimica Acta Part A Mol. Biomol. Spectroscopy 151, 861–866 (2015)CrossRef M.R. Siddiqui, S.M. Wabaidur, Z.A. ALOthman, M. Rafiquee, Rapid and sensitive method for analysis of nitrate in meat samples using ultra performance liquid chromatography–mass spectrometry. Spectrochimica Acta Part A Mol. Biomol. Spectroscopy 151, 861–866 (2015)CrossRef
43.
go back to reference P. Niedzielski, I. Kurzyca, J. Siepak, A new tool for inorganic nitrogen speciation study: Simultaneous determination of ammonium ion, nitrite and nitrate by ion chromatography with post-column ammonium derivatization by Nessler reagent and diode-array detection in rain water samples. Anal. Chim. Acta 577(2), 220–224 (2006)CrossRef P. Niedzielski, I. Kurzyca, J. Siepak, A new tool for inorganic nitrogen speciation study: Simultaneous determination of ammonium ion, nitrite and nitrate by ion chromatography with post-column ammonium derivatization by Nessler reagent and diode-array detection in rain water samples. Anal. Chim. Acta 577(2), 220–224 (2006)CrossRef
44.
go back to reference K. Tirumalesh, Simultaneous determination of bromide and nitrate in contaminated waters by ion chromatography using amperometry and absorbance detectors. Talanta 74(5), 1428–1434 (2008)CrossRef K. Tirumalesh, Simultaneous determination of bromide and nitrate in contaminated waters by ion chromatography using amperometry and absorbance detectors. Talanta 74(5), 1428–1434 (2008)CrossRef
45.
go back to reference M. Tabatabai, W. Dick, Simultaneous determination of nitrate, chloride, sulfate, and phosphate in natural waters by ion chromatography 1. J. Environ. Qual. 12(2), 209–213 (1983)CrossRef M. Tabatabai, W. Dick, Simultaneous determination of nitrate, chloride, sulfate, and phosphate in natural waters by ion chromatography 1. J. Environ. Qual. 12(2), 209–213 (1983)CrossRef
46.
go back to reference J.A. Morales, L.S. de Graterol, J. Mesa, Determination of chloride, sulfate and nitrate in groundwater samples by ion chromatography. J. Chromatogr. A 884(1–2), 185–190 (2000)CrossRef J.A. Morales, L.S. de Graterol, J. Mesa, Determination of chloride, sulfate and nitrate in groundwater samples by ion chromatography. J. Chromatogr. A 884(1–2), 185–190 (2000)CrossRef
47.
go back to reference I. Dahllöf, O. Svensson, C. Torstensson, Optimising the determination of nitrate and phosphate in sea water with ion chromatography using experimental design. J. Chromatogr. A 771(1–2), 163–168 (1997)CrossRef I. Dahllöf, O. Svensson, C. Torstensson, Optimising the determination of nitrate and phosphate in sea water with ion chromatography using experimental design. J. Chromatogr. A 771(1–2), 163–168 (1997)CrossRef
48.
go back to reference E. Kapinus, I. Revelsky, V. Ulogov, Y.A. Lyalikov, Simultaneous determination of fluoride, chloride, nitrite, bromide, nitrate, phosphate and sulfate in aqueous solutions at 10–9 to 10–8% level by ion chromatography. J. Chromatogr. B 800(1–2), 321–323 (2004)CrossRef E. Kapinus, I. Revelsky, V. Ulogov, Y.A. Lyalikov, Simultaneous determination of fluoride, chloride, nitrite, bromide, nitrate, phosphate and sulfate in aqueous solutions at 10–9 to 10–8% level by ion chromatography. J. Chromatogr. B 800(1–2), 321–323 (2004)CrossRef
49.
go back to reference M. Neal, C. Neal, H. Wickham, S. Harman, Determination of bromide, chloride, fluoride, nitrate and sulphate by ion chromatography: comparisons of methodologies for rainfall, cloud water and river waters at the Plynlimon catchments of mid-Wales. Hydrol. Earth Syst. Sci. 11(1), 294–300 (2007)CrossRef M. Neal, C. Neal, H. Wickham, S. Harman, Determination of bromide, chloride, fluoride, nitrate and sulphate by ion chromatography: comparisons of methodologies for rainfall, cloud water and river waters at the Plynlimon catchments of mid-Wales. Hydrol. Earth Syst. Sci. 11(1), 294–300 (2007)CrossRef
50.
go back to reference M. Akyüz, Ş. Ata, Determination of low level nitrite and nitrate in biological, food and environmental samples by gas chromatography–mass spectrometry and liquid chromatography with fluorescence detection. Talanta 79(3), 900–904 (2009)CrossRef M. Akyüz, Ş. Ata, Determination of low level nitrite and nitrate in biological, food and environmental samples by gas chromatography–mass spectrometry and liquid chromatography with fluorescence detection. Talanta 79(3), 900–904 (2009)CrossRef
51.
go back to reference Y. Li, J.S. Whitaker, C.L. McCarty, Reversed-phase liquid chromatography/electrospray ionization/mass spectrometry with isotope dilution for the analysis of nitrate and nitrite in water. J. Chromatogr. A 1218(3), 476–483 (2011)CrossRef Y. Li, J.S. Whitaker, C.L. McCarty, Reversed-phase liquid chromatography/electrospray ionization/mass spectrometry with isotope dilution for the analysis of nitrate and nitrite in water. J. Chromatogr. A 1218(3), 476–483 (2011)CrossRef
52.
go back to reference Y. Zuo, C. Wang, T. Van, Simultaneous determination of nitrite and nitrate in dew, rain, snow and lake water samples by ion-pair high-performance liquid chromatography. Talanta 70(2), 281–285 (2006)CrossRef Y. Zuo, C. Wang, T. Van, Simultaneous determination of nitrite and nitrate in dew, rain, snow and lake water samples by ion-pair high-performance liquid chromatography. Talanta 70(2), 281–285 (2006)CrossRef
53.
go back to reference S. Rodriguez-Mozaz, M.J.L. de Alda, D. Barceló, Biosensors as useful tools for environmental analysis and monitoring. Anal. Bioanal. Chem. 386(4), 1025–1041 (2006)CrossRef S. Rodriguez-Mozaz, M.J.L. de Alda, D. Barceló, Biosensors as useful tools for environmental analysis and monitoring. Anal. Bioanal. Chem. 386(4), 1025–1041 (2006)CrossRef
54.
go back to reference S. Rodriguez-Mozaz, M.J.L. de Alda, D. Barceló, Fast and simultaneous monitoring of organic pollutants in a drinking water treatment plant by a multi-analyte biosensor followed by LC–MS validation. Talanta 69(2), 377–384 (2006)CrossRef S. Rodriguez-Mozaz, M.J.L. de Alda, D. Barceló, Fast and simultaneous monitoring of organic pollutants in a drinking water treatment plant by a multi-analyte biosensor followed by LC–MS validation. Talanta 69(2), 377–384 (2006)CrossRef
55.
go back to reference B. Roig, I. Bazin, S. Bayle, D. Habauzit, J. Chopineau, Biomolecular recognition systems for water monitoring, in Rapid Chemical and Biological Techniques for Water Monitoring (2009), pp. 175–195 B. Roig, I. Bazin, S. Bayle, D. Habauzit, J. Chopineau, Biomolecular recognition systems for water monitoring, in Rapid Chemical and Biological Techniques for Water Monitoring (2009), pp. 175–195
56.
go back to reference M. Farré, L. Kantiani, S. Pérez, D. Barceló, Sensors and biosensors in support of EU Directives. TrAC Trends Anal. Chem. 28(2), 170–185 (2009)CrossRef M. Farré, L. Kantiani, S. Pérez, D. Barceló, Sensors and biosensors in support of EU Directives. TrAC Trends Anal. Chem. 28(2), 170–185 (2009)CrossRef
57.
go back to reference H.-H. Zeng, R.B. Thompson, B.P. Maliwal, G.R. Fones, J.W. Moffett, C.A. Fierke, Real-time determination of picomolar free Cu (II) in seawater using a fluorescence-based fiber optic biosensor. Anal. Chem. 75(24), 6807–6812 (2003)CrossRef H.-H. Zeng, R.B. Thompson, B.P. Maliwal, G.R. Fones, J.W. Moffett, C.A. Fierke, Real-time determination of picomolar free Cu (II) in seawater using a fluorescence-based fiber optic biosensor. Anal. Chem. 75(24), 6807–6812 (2003)CrossRef
58.
go back to reference W. Xuejiang et al., Conductometric nitrate biosensor based on methyl viologen/Nafion®/nitrate reductase interdigitated electrodes. Talanta 69(2), 450–455 (2006)CrossRef W. Xuejiang et al., Conductometric nitrate biosensor based on methyl viologen/Nafion®/nitrate reductase interdigitated electrodes. Talanta 69(2), 450–455 (2006)CrossRef
59.
go back to reference S. Cosnier, S. Da Silva, D. Shan, K. Gorgy, Electrochemical nitrate biosensor based on poly (pyrrole–viologen) film–nitrate reductase–clay composite. Bioelectrochemistry 74(1), 47–51 (2008)CrossRef S. Cosnier, S. Da Silva, D. Shan, K. Gorgy, Electrochemical nitrate biosensor based on poly (pyrrole–viologen) film–nitrate reductase–clay composite. Bioelectrochemistry 74(1), 47–51 (2008)CrossRef
60.
go back to reference Z. Zhang et al., A novel nitrite biosensor based on conductometric electrode modified with cytochrome c nitrite reductase composite membrane. Biosens. Bioelectron. 24(6), 1574–1579 (2009)CrossRef Z. Zhang et al., A novel nitrite biosensor based on conductometric electrode modified with cytochrome c nitrite reductase composite membrane. Biosens. Bioelectron. 24(6), 1574–1579 (2009)CrossRef
61.
go back to reference T. Madasamy, M. Pandiaraj, M. Balamurugan, K. Bhargava, N.K. Sethy, C. Karunakaran, Copper, zinc superoxide dismutase and nitrate reductase coimmobilized bienzymatic biosensor for the simultaneous determination of nitrite and nitrate. Biosens. Bioelectron. 52, 209–215 (2014)CrossRef T. Madasamy, M. Pandiaraj, M. Balamurugan, K. Bhargava, N.K. Sethy, C. Karunakaran, Copper, zinc superoxide dismutase and nitrate reductase coimmobilized bienzymatic biosensor for the simultaneous determination of nitrite and nitrate. Biosens. Bioelectron. 52, 209–215 (2014)CrossRef
62.
go back to reference D. Albanese, M. Di Matteo, C. Alessio, Screen printed biosensors for detection of nitrates in drinking water,in Computer Aided Chemical Engineering, vol. 28 (Elsevier, Amsterdam, 2010), pp. 283–288 D. Albanese, M. Di Matteo, C. Alessio, Screen printed biosensors for detection of nitrates in drinking water,in Computer Aided Chemical Engineering, vol. 28 (Elsevier, Amsterdam, 2010), pp. 283–288
63.
go back to reference A. Ayala, L. Leal, L. Ferrer, V. Cerdà, Multiparametric automated system for sulfate, nitrite and nitrate monitoring in drinking water and wastewater based on sequential injection analysis. Microchem. J. 100, 55–60 (2012)CrossRef A. Ayala, L. Leal, L. Ferrer, V. Cerdà, Multiparametric automated system for sulfate, nitrite and nitrate monitoring in drinking water and wastewater based on sequential injection analysis. Microchem. J. 100, 55–60 (2012)CrossRef
64.
go back to reference M. Yaqoob, A. Nabi, P.J. Worsfold, Determination of nitrite and nitrate in natural waters using flow injection with spectrophotometric detection. J. Chem. Soc. Pakistan 34(3) (2013) M. Yaqoob, A. Nabi, P.J. Worsfold, Determination of nitrite and nitrate in natural waters using flow injection with spectrophotometric detection. J. Chem. Soc. Pakistan 34(3) (2013)
65.
go back to reference M. Yaqoob, B. Folgado Biot, A. Nabi, P.J. Worsfold, Determination of nitrate and nitrite in freshwaters using flow-injection with luminol chemiluminescence detection. Luminescence 27(5), 419–425 (2012)CrossRef M. Yaqoob, B. Folgado Biot, A. Nabi, P.J. Worsfold, Determination of nitrate and nitrite in freshwaters using flow-injection with luminol chemiluminescence detection. Luminescence 27(5), 419–425 (2012)CrossRef
66.
go back to reference S. Wang, K. Lin, N. Chen, D. Yuan, J. Ma, Automated determination of nitrate plus nitrite in aqueous samples with flow injection analysis using vanadium (III) chloride as reductant. Talanta 146, 744–748 (2016)CrossRef S. Wang, K. Lin, N. Chen, D. Yuan, J. Ma, Automated determination of nitrate plus nitrite in aqueous samples with flow injection analysis using vanadium (III) chloride as reductant. Talanta 146, 744–748 (2016)CrossRef
67.
go back to reference C.L. Pasquali, A. Gallego-Picó, P.F. Hernando, M. Velasco, J.D. Alegría, Two rapid and sensitive automated methods for the determination of nitrite and nitrate in soil samples. Microchem. J. 94(1), 79–82 (2010)CrossRef C.L. Pasquali, A. Gallego-Picó, P.F. Hernando, M. Velasco, J.D. Alegría, Two rapid and sensitive automated methods for the determination of nitrite and nitrate in soil samples. Microchem. J. 94(1), 79–82 (2010)CrossRef
68.
go back to reference C.L. Pasquali, P.F. Hernando, J.D. Alegria, Spectrophotometric simultaneous determination of nitrite, nitrate and ammonium in soils by flow injection analysis. Analytica chimica Acta 600(1–2), 177-182 (2007)CrossRef C.L. Pasquali, P.F. Hernando, J.D. Alegria, Spectrophotometric simultaneous determination of nitrite, nitrate and ammonium in soils by flow injection analysis. Analytica chimica Acta 600(1–2), 177-182 (2007)CrossRef
69.
go back to reference S. Feng, M. Zhang, Y. Huang, D. Yuan, Y. Zhu, Simultaneous determination of nanomolar nitrite and nitrate in seawater using reverse flow injection analysis coupled with a long path length liquid waveguide capillary cell. Talanta 117, 456–462 (2013)CrossRef S. Feng, M. Zhang, Y. Huang, D. Yuan, Y. Zhu, Simultaneous determination of nanomolar nitrite and nitrate in seawater using reverse flow injection analysis coupled with a long path length liquid waveguide capillary cell. Talanta 117, 456–462 (2013)CrossRef
70.
go back to reference P.S. Ellis, A.M.H. Shabani, B.S. Gentle, I.D. McKelvie, Field measurement of nitrate in marine and estuarine waters with a flow analysis system utilizing on-line zinc reduction. Talanta 84(1), 98–103 (2011)CrossRef P.S. Ellis, A.M.H. Shabani, B.S. Gentle, I.D. McKelvie, Field measurement of nitrate in marine and estuarine waters with a flow analysis system utilizing on-line zinc reduction. Talanta 84(1), 98–103 (2011)CrossRef
71.
go back to reference A.D. Beaton et al., Lab-on-chip measurement of nitrate and nitrite for in situ analysis of natural waters. Environ. Sci. Technol. 46(17), 9548–9556 (2012)CrossRef A.D. Beaton et al., Lab-on-chip measurement of nitrate and nitrite for in situ analysis of natural waters. Environ. Sci. Technol. 46(17), 9548–9556 (2012)CrossRef
72.
go back to reference N. Amini, I. McKelvie, An enzymatic flow analysis method for the determination of phosphatidylcholine in sediment pore waters and extracts. Talanta 66(2), 445–452 (2005)CrossRef N. Amini, I. McKelvie, An enzymatic flow analysis method for the determination of phosphatidylcholine in sediment pore waters and extracts. Talanta 66(2), 445–452 (2005)CrossRef
73.
go back to reference B. Paczosa-Bator, L. Cabaj, M. Raś, B. Baś, R. Piech, Potentiometric sensor platform based on a carbon black modified electrodes. Int. J. Electrochem. Sci. 9, 2816–2823 (2014) B. Paczosa-Bator, L. Cabaj, M. Raś, B. Baś, R. Piech, Potentiometric sensor platform based on a carbon black modified electrodes. Int. J. Electrochem. Sci. 9, 2816–2823 (2014)
74.
go back to reference E. Lindner, B.D. Pendley, A tutorial on the application of ion-selective electrode potentiometry: an analytical method with unique qualities, unexplored opportunities and potential pitfalls; Tutorial. Anal. Chim. Acta 762, 1–13 (2013)CrossRef E. Lindner, B.D. Pendley, A tutorial on the application of ion-selective electrode potentiometry: an analytical method with unique qualities, unexplored opportunities and potential pitfalls; Tutorial. Anal. Chim. Acta 762, 1–13 (2013)CrossRef
75.
go back to reference A. Stortini, L. Moretto, A. Mardegan, M. Ongaro, P. Ugo, Arrays of copper nanowire electrodes: Preparation, characterization and application as nitrate sensor. Sens. Actuators B Chem. 207, 186–192 (2015)CrossRef A. Stortini, L. Moretto, A. Mardegan, M. Ongaro, P. Ugo, Arrays of copper nanowire electrodes: Preparation, characterization and application as nitrate sensor. Sens. Actuators B Chem. 207, 186–192 (2015)CrossRef
76.
go back to reference L.T. Duarte, C. Jutten, S. Moussaoui, A Bayesian nonlinear source separation method for smart ion-selective electrode arrays. IEEE Sens. J. 9(12), 1763–1771 (2009)CrossRef L.T. Duarte, C. Jutten, S. Moussaoui, A Bayesian nonlinear source separation method for smart ion-selective electrode arrays. IEEE Sens. J. 9(12), 1763–1771 (2009)CrossRef
77.
go back to reference P. Ciosek, W. Wróblewski, Potentiometric electronic tongues for foodstuff and biosample recognition—An overview. Sensors 11(5), 4688–4701 (2011)CrossRef P. Ciosek, W. Wróblewski, Potentiometric electronic tongues for foodstuff and biosample recognition—An overview. Sensors 11(5), 4688–4701 (2011)CrossRef
78.
go back to reference T. Öznülüer, B. Özdurak, H.Ö. Doğan, Electrochemical reduction of nitrate on graphene modified copper electrodes in alkaline media. J. Electroanal. Chem. 699, 1–5 (2013)CrossRef T. Öznülüer, B. Özdurak, H.Ö. Doğan, Electrochemical reduction of nitrate on graphene modified copper electrodes in alkaline media. J. Electroanal. Chem. 699, 1–5 (2013)CrossRef
79.
go back to reference Z. Chang, Y. Zhu, L. Zhang, S. Du, Measurement experiment and mathematical model of nitrate ion selective electrode, in 2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC) (IEEE, 2013), pp. 48–52 Z. Chang, Y. Zhu, L. Zhang, S. Du, Measurement experiment and mathematical model of nitrate ion selective electrode, in 2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC) (IEEE, 2013), pp. 48–52
80.
go back to reference M.A.M. Yunus, S. Ibrahim, W.A.H. Altowayti, G.P. San, S.C. Mukhopadhyay, Selective membrane for detecting nitrate based on planar electromagnetic sensors array, in 2015 10th AsianControl Conference (ASCC) (IEEE, 2015), pp. 1–6 M.A.M. Yunus, S. Ibrahim, W.A.H. Altowayti, G.P. San, S.C. Mukhopadhyay, Selective membrane for detecting nitrate based on planar electromagnetic sensors array, in 2015 10th AsianControl Conference (ASCC) (IEEE, 2015), pp. 1–6
81.
go back to reference M.A.M. Yunus, S.C. Mukhopadhyay, Novel planar electromagnetic sensors for detection of nitrates and contamination in natural water sources. IEEE Sens. J. 11(6), 1440–1447 (2011)CrossRef M.A.M. Yunus, S.C. Mukhopadhyay, Novel planar electromagnetic sensors for detection of nitrates and contamination in natural water sources. IEEE Sens. J. 11(6), 1440–1447 (2011)CrossRef
82.
go back to reference A.S.M. Nor, M.A.M. Yunus, S.W. Nawawi, S. Ibrahim, Low-cost sensor array design optimization based on planar electromagnetic sensor design for detecting nitrate and sulphate,” in 2013 Seventh International Conference on Sensing Technology (ICST) (IEEE, 2013), pp. 693–698 A.S.M. Nor, M.A.M. Yunus, S.W. Nawawi, S. Ibrahim, Low-cost sensor array design optimization based on planar electromagnetic sensor design for detecting nitrate and sulphate,” in 2013 Seventh International Conference on Sensing Technology (ICST) (IEEE, 2013), pp. 693–698
83.
go back to reference M.A.M. Yunus, S. Mukhopadhyay, A. Punchihewa, Application of independent component analysis for estimating nitrate contamination in natural water sources using planar electromagnetic sensor, in 2011 Fifth International Conference on Sensing Technology (ICST) (IEEE, 2011), pp. 538–543 M.A.M. Yunus, S. Mukhopadhyay, A. Punchihewa, Application of independent component analysis for estimating nitrate contamination in natural water sources using planar electromagnetic sensor, in 2011 Fifth International Conference on Sensing Technology (ICST) (IEEE, 2011), pp. 538–543
84.
go back to reference M.A.M. Yunus, S.C. Mukhopadhyay, S. Ibrahim, Planar electromagnetic sensor based estimation of nitrate contamination in water sources using independent component analysis. IEEE Sens. J. 12(6), 2024–2034 (2012)CrossRef M.A.M. Yunus, S.C. Mukhopadhyay, S. Ibrahim, Planar electromagnetic sensor based estimation of nitrate contamination in water sources using independent component analysis. IEEE Sens. J. 12(6), 2024–2034 (2012)CrossRef
85.
go back to reference A.S.M. Nor, M. Faramarzi, M.A.M. Yunus, S. Ibrahim, Nitrate and sulfate estimations in water sources using a planar electromagnetic sensor array and artificial neural network method. IEEE Sens. J. 15(1), 497–504 (2015)CrossRef A.S.M. Nor, M. Faramarzi, M.A.M. Yunus, S. Ibrahim, Nitrate and sulfate estimations in water sources using a planar electromagnetic sensor array and artificial neural network method. IEEE Sens. J. 15(1), 497–504 (2015)CrossRef
86.
go back to reference M.M. Yunus, S.C. Mukhopadhyay, M. Rahman, N. Zahidin, S. Ibrahim, The selection of novel planar electromagnetic sensors for the application of nitrate contamination detection, in Smart Sensors for Real-Time Water Quality Monitoring (Springer, Berlin, 2013), pp. 171–195 M.M. Yunus, S.C. Mukhopadhyay, M. Rahman, N. Zahidin, S. Ibrahim, The selection of novel planar electromagnetic sensors for the application of nitrate contamination detection, in Smart Sensors for Real-Time Water Quality Monitoring (Springer, Berlin, 2013), pp. 171–195
87.
go back to reference M.M. Yunus, S.C. Mukhopadhyay, A. Punchihewa, S. Ibrahim, The effect of temperature factor on the detection of nitrate based on planar electromagnetic sensor and independent component analysis, in Smart Sensing Technology for Agriculture and Environmental Monitoring (Springer, Berlin, 2012), pp. 103–118 M.M. Yunus, S.C. Mukhopadhyay, A. Punchihewa, S. Ibrahim, The effect of temperature factor on the detection of nitrate based on planar electromagnetic sensor and independent component analysis, in Smart Sensing Technology for Agriculture and Environmental Monitoring (Springer, Berlin, 2012), pp. 103–118
88.
go back to reference X. Wang, Y. Wang, H. Leung, S.C. Mukhopadhyay, M. Tian, J. Zhou, Mechanism and experiment of planar electrode sensors in water pollutant measurement. IEEE Trans. Instrum. Meas. 64(2), 516–523 (2015)CrossRef X. Wang, Y. Wang, H. Leung, S.C. Mukhopadhyay, M. Tian, J. Zhou, Mechanism and experiment of planar electrode sensors in water pollutant measurement. IEEE Trans. Instrum. Meas. 64(2), 516–523 (2015)CrossRef
89.
go back to reference A.V. Mamishev, K. Sundara-Rajan, F. Yang, Y. Du, M. Zahn, Interdigital sensors and transducers. Proc. IEEE 92(5), 808–845 (2004)CrossRef A.V. Mamishev, K. Sundara-Rajan, F. Yang, Y. Du, M. Zahn, Interdigital sensors and transducers. Proc. IEEE 92(5), 808–845 (2004)CrossRef
90.
go back to reference M.E.E. Alahi, L. Xie, S. Mukhopadhyay, L. Burkitt, A temperature compensated smart nitrate-sensor for agricultural industry. IEEE Trans. Ind. Electron. 64(9), 7333–7341 (2017)CrossRef M.E.E. Alahi, L. Xie, S. Mukhopadhyay, L. Burkitt, A temperature compensated smart nitrate-sensor for agricultural industry. IEEE Trans. Ind. Electron. 64(9), 7333–7341 (2017)CrossRef
91.
go back to reference M.E.E. Alahi, X. Li, S.C. Mukhopadhyay, L. Burkitt, A temperature compensated smart nitrate-sensor for agricultural industry. IEEE Trans. Ind. Electron. (2017) M.E.E. Alahi, X. Li, S.C. Mukhopadhyay, L. Burkitt, A temperature compensated smart nitrate-sensor for agricultural industry. IEEE Trans. Ind. Electron. (2017)
92.
go back to reference M.E.E. Alahi, S.C. Mukhopadhyay, L. Burkitt, Imprinted polymer coated impedimetric nitrate sensor for real-time water quality monitoring. Sens. Actuators B Chem. 259, 753–761 (2018)CrossRef M.E.E. Alahi, S.C. Mukhopadhyay, L. Burkitt, Imprinted polymer coated impedimetric nitrate sensor for real-time water quality monitoring. Sens. Actuators B Chem. 259, 753–761 (2018)CrossRef
93.
go back to reference M.E.E. Alahi, X. Li, S.C. Mukhopadhyay, L. Burkitt, Application of practical nitrate sensor based on electrochemical impedance spectroscopy, in Sensors for Everyday Life (Springer, Berlin, 2017), pp. 109–136 M.E.E. Alahi, X. Li, S.C. Mukhopadhyay, L. Burkitt, Application of practical nitrate sensor based on electrochemical impedance spectroscopy, in Sensors for Everyday Life (Springer, Berlin, 2017), pp. 109–136
94.
go back to reference M.E.E. Alahi, A. Nag, S.C. Mukhopadhyay, L. Burkitt, A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sens. Actuators A 269, 79–90 (2018)CrossRef M.E.E. Alahi, A. Nag, S.C. Mukhopadhyay, L. Burkitt, A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sens. Actuators A 269, 79–90 (2018)CrossRef
95.
go back to reference M.E.E. Alahi, L. Xie, A.I. Zia, S.C. Mukhopadhyay, L. Burkitt, Practical nitrate sensor based on electrochemical impedance measurement, in 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings (I2MTC) (IEEE, 2016), pp. 1–6 M.E.E. Alahi, L. Xie, A.I. Zia, S.C. Mukhopadhyay, L. Burkitt, Practical nitrate sensor based on electrochemical impedance measurement, in 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings (I2MTC) (IEEE, 2016), pp. 1–6
96.
go back to reference M.E.E. Alahi, N. Afsarimanesh, S.C. Mukhopadhyay, L. Burkitt, Development of the selectivity of nitrate sensors based on ion imprinted polymerization technique, in 2017 Eleventh International Conference on Sensing Technology (ICST) (IEEE, 2017), pp. 1–6 M.E.E. Alahi, N. Afsarimanesh, S.C. Mukhopadhyay, L. Burkitt, Development of the selectivity of nitrate sensors based on ion imprinted polymerization technique, in 2017 Eleventh International Conference on Sensing Technology (ICST) (IEEE, 2017), pp. 1–6
97.
go back to reference M.E.E. Alahi, N. Pereira-Ishak, S.C. Mukhopadhyay, L. Burkitt, An internet-of-things enabled smart sensing system for nitrate monitoring. IEEE Internet Things J. (2018) M.E.E. Alahi, N. Pereira-Ishak, S.C. Mukhopadhyay, L. Burkitt, An internet-of-things enabled smart sensing system for nitrate monitoring. IEEE Internet Things J. (2018)
98.
go back to reference Y. Moo, M. Matjafri, H. Lim, C. Tan, New development of optical fibre sensor for determination of nitrate and nitrite in water. Optik-Int. J. Light Electron Optics 127(3), 1312–1319 (2016)CrossRef Y. Moo, M. Matjafri, H. Lim, C. Tan, New development of optical fibre sensor for determination of nitrate and nitrite in water. Optik-Int. J. Light Electron Optics 127(3), 1312–1319 (2016)CrossRef
99.
go back to reference A. Azmi, A.A. Azman, S. Ibrahim, M.A.M. Yunus, Techniques in advancing the capabilities of various nitrate detection methods: a review. Int. J. Smart Sens. Intell. Syst. 10(2) (2017)CrossRef A. Azmi, A.A. Azman, S. Ibrahim, M.A.M. Yunus, Techniques in advancing the capabilities of various nitrate detection methods: a review. Int. J. Smart Sens. Intell. Syst. 10(2) (2017)CrossRef
100.
go back to reference N. Amini, M. Shamsipur, M.B. Gholivand, K. Naderi, Electrocatalytic and new electrochemical properties of chloropromazine into silicaNPs/chloropromazine/Nafion nanocomposite: application to nitrite detection at low potential. Microchem. J. 131, 43–50 (2017)CrossRef N. Amini, M. Shamsipur, M.B. Gholivand, K. Naderi, Electrocatalytic and new electrochemical properties of chloropromazine into silicaNPs/chloropromazine/Nafion nanocomposite: application to nitrite detection at low potential. Microchem. J. 131, 43–50 (2017)CrossRef
101.
go back to reference B. Mahieuxe, M. Carré, M. Viriot, J. André, M. Donner, Fiber-optic fluorescing sensors for nitrate and nitrite detection. J. Fluoresc. 4(1), 7–10 (1994)CrossRef B. Mahieuxe, M. Carré, M. Viriot, J. André, M. Donner, Fiber-optic fluorescing sensors for nitrate and nitrite detection. J. Fluoresc. 4(1), 7–10 (1994)CrossRef
102.
go back to reference J. Camas-Anzueto, A. Aguilar-Castillejos, J. Castañón-González, M. Lujpan-Hidalgo, H.H. de León, R.M. Grajales, Fiber sensor based on Lophine sensitive layer for nitrate detection in drinking water. Opt. Lasers Eng. 60, 38–43 (2014)CrossRef J. Camas-Anzueto, A. Aguilar-Castillejos, J. Castañón-González, M. Lujpan-Hidalgo, H.H. de León, R.M. Grajales, Fiber sensor based on Lophine sensitive layer for nitrate detection in drinking water. Opt. Lasers Eng. 60, 38–43 (2014)CrossRef
103.
go back to reference M.Y. Chong, M.Z.M. Jafri, L.H. San, T.C. Ho, Detection of nitrate ions in water by optical fiber, in 2012 International Conference on Computer and Communication Engineering (ICCCE) (IEEE, 2012), pp. 271–273 M.Y. Chong, M.Z.M. Jafri, L.H. San, T.C. Ho, Detection of nitrate ions in water by optical fiber, in 2012 International Conference on Computer and Communication Engineering (ICCCE) (IEEE, 2012), pp. 271–273
104.
go back to reference K.S. Johnson, L.J. Coletti, H.W. Jannasch, C.M. Sakamoto, D.D. Swift, S.C. Riser, Long-term nitrate measurements in the ocean using the in situ ultraviolet spectrophotometer: sensor integration into the Apex profiling float. J. Atmos. Oceanic Technol. 30(8), 1854–1866 (2013)CrossRef K.S. Johnson, L.J. Coletti, H.W. Jannasch, C.M. Sakamoto, D.D. Swift, S.C. Riser, Long-term nitrate measurements in the ocean using the in situ ultraviolet spectrophotometer: sensor integration into the Apex profiling float. J. Atmos. Oceanic Technol. 30(8), 1854–1866 (2013)CrossRef
105.
go back to reference A. Lalasangi et al., Fiber Bragg grating sensor for detection of nitrate concentration in water. Sens. Transducers 125(2), 187 (2011) A. Lalasangi et al., Fiber Bragg grating sensor for detection of nitrate concentration in water. Sens. Transducers 125(2), 187 (2011)
106.
go back to reference C. Munkholm, D.R. Walt, F.P. Milanovich, A fiber-optic sensor for CO2 measurement. Talanta 35(2), 109–112 (1988)CrossRef C. Munkholm, D.R. Walt, F.P. Milanovich, A fiber-optic sensor for CO2 measurement. Talanta 35(2), 109–112 (1988)CrossRef
107.
go back to reference Y. Zhu, A. Wang, Miniature fiber-optic pressure sensor. IEEE Photonics Technol. Lett. 17(2), 447–449 (2005)CrossRef Y. Zhu, A. Wang, Miniature fiber-optic pressure sensor. IEEE Photonics Technol. Lett. 17(2), 447–449 (2005)CrossRef
108.
go back to reference S. Zhang, H. Chen, H. Fu, Fiber-optic temperature sensor using an optoelectronic oscillator, in 14th International Conference on Optical Communications and Networks (ICOCN) (IEEE, 2015), pp. 1–3 S. Zhang, H. Chen, H. Fu, Fiber-optic temperature sensor using an optoelectronic oscillator, in 14th International Conference on Optical Communications and Networks (ICOCN) (IEEE, 2015), pp. 1–3
109.
go back to reference F. Delport et al., Real-time monitoring of DNA hybridization and melting processes using a fiber optic sensor. Nanotechnology 23(6), 065503 (2012)CrossRef F. Delport et al., Real-time monitoring of DNA hybridization and melting processes using a fiber optic sensor. Nanotechnology 23(6), 065503 (2012)CrossRef
110.
go back to reference P. Bhatia, B.D. Gupta, Fabrication and characterization of a surface plasmon resonance based fiber optic urea sensor for biomedical applications. Sens. Actuators B Chem. 161(1), 434–438 (2012)CrossRef P. Bhatia, B.D. Gupta, Fabrication and characterization of a surface plasmon resonance based fiber optic urea sensor for biomedical applications. Sens. Actuators B Chem. 161(1), 434–438 (2012)CrossRef
111.
go back to reference P. Bagade, A. Banerjee, S.K. Gupta, Evidence-based development approach for safe, sustainable and secure mobile medical app, in Wearable Electronics Sensors (Springer, Berlin, 2015), pp. 135–174CrossRef P. Bagade, A. Banerjee, S.K. Gupta, Evidence-based development approach for safe, sustainable and secure mobile medical app, in Wearable Electronics Sensors (Springer, Berlin, 2015), pp. 135–174CrossRef
117.
go back to reference A. Nag, S. Mukhopadhyay, Smart home: recognition of activities of elderly for 24/7; coverage issues, in Proceedings of the 2014 International Conference on Sensing Technology, Liverpool, UK, vol. 2 (2014), pp. 480–489 A. Nag, S. Mukhopadhyay, Smart home: recognition of activities of elderly for 24/7; coverage issues, in Proceedings of the 2014 International Conference on Sensing Technology, Liverpool, UK, vol. 2 (2014), pp. 480–489
118.
go back to reference V. Kafle, Y. Fukushima, H. Harai, Design and implementation of dynamic mobile sensor network platform. Commun. Mag. IEEE 53(3), 48–57 (2015)CrossRef V. Kafle, Y. Fukushima, H. Harai, Design and implementation of dynamic mobile sensor network platform. Commun. Mag. IEEE 53(3), 48–57 (2015)CrossRef
119.
go back to reference M.S. Khan, M.S. Islam, H. Deng, Design of a reconfigurable RFID sensing tag as a generic sensing platform toward the future internet of things. Internet Things J. IEEE 1(4), 300–310 (2014)CrossRef M.S. Khan, M.S. Islam, H. Deng, Design of a reconfigurable RFID sensing tag as a generic sensing platform toward the future internet of things. Internet Things J. IEEE 1(4), 300–310 (2014)CrossRef
120.
go back to reference M.E.E. Alahi, A. Nag, N. Afsari Manesh, S.C. Mukhopadhyay, J.K. Roy, A simple embedded sensor: Excitation and interfacing (Smart Sensors, Measurement and Instrumentation) (2017)CrossRef M.E.E. Alahi, A. Nag, N. Afsari Manesh, S.C. Mukhopadhyay, J.K. Roy, A simple embedded sensor: Excitation and interfacing (Smart Sensors, Measurement and Instrumentation) (2017)CrossRef
122.
go back to reference H. Ghayvat, J. Liu, M. Alahi, S. Mukhopadhyay, X. Gui, Internet of things for smart homes and buildings: opportunities and challenges. Austr. J. Telecommun. Digital Econ. 3(4), 33–47 (2015)CrossRef H. Ghayvat, J. Liu, M. Alahi, S. Mukhopadhyay, X. Gui, Internet of things for smart homes and buildings: opportunities and challenges. Austr. J. Telecommun. Digital Econ. 3(4), 33–47 (2015)CrossRef
123.
go back to reference A. Ouadjaout et al., DZ50: energy-efficient wireless sensor mote platform for low data rate applications. Proc. Comput. Sci. 37, 189–195 (2014)CrossRef A. Ouadjaout et al., DZ50: energy-efficient wireless sensor mote platform for low data rate applications. Proc. Comput. Sci. 37, 189–195 (2014)CrossRef
124.
go back to reference A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, T. Razafindralambo, A survey on facilities for experimental internet of things research. Commun. Mag. IEEE 49(11), 58–67 (2011)CrossRef A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, T. Razafindralambo, A survey on facilities for experimental internet of things research. Commun. Mag. IEEE 49(11), 58–67 (2011)CrossRef
125.
go back to reference P. Mell, T. Grance, The NIST definition of cloud computing (2011) P. Mell, T. Grance, The NIST definition of cloud computing (2011)
126.
go back to reference A. Flammini, E. Sisinni, Wireless sensor networking in the internet of things and cloud computing era. Proc. Eng. 87, 672–679 (2014)CrossRef A. Flammini, E. Sisinni, Wireless sensor networking in the internet of things and cloud computing era. Proc. Eng. 87, 672–679 (2014)CrossRef
127.
go back to reference I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)CrossRef I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)CrossRef
128.
go back to reference E. Gaura, L. Girod, J. Brusey, M. Allen, G. Challen, Wireless Sensor Networks: Deployments and Design Frameworks (Springer Science & Business Media, 2010) E. Gaura, L. Girod, J. Brusey, M. Allen, G. Challen, Wireless Sensor Networks: Deployments and Design Frameworks (Springer Science & Business Media, 2010)
129.
go back to reference J. Chen, M. Díaz, L. Llopis, B. Rubio, J.M. Troya, A survey on quality of service support in wireless sensor and actor networks: requirements and challenges in the context of critical infrastructure protection. J. Netw. Comput. Appl. 34(4), 1225–1239 (2011)CrossRef J. Chen, M. Díaz, L. Llopis, B. Rubio, J.M. Troya, A survey on quality of service support in wireless sensor and actor networks: requirements and challenges in the context of critical infrastructure protection. J. Netw. Comput. Appl. 34(4), 1225–1239 (2011)CrossRef
130.
go back to reference R. Moss Kanter, S.S. Litow, Informed and interconnected: A manifesto for smarter cities (2009) R. Moss Kanter, S.S. Litow, Informed and interconnected: A manifesto for smarter cities (2009)
131.
go back to reference S. Dirks, M. Keeling, A Vision of Smarter Cities: How Cities Can Lead the Way into a Prosperous and Sustainable Future, vol. 8 (IBM Institute for Business Value, 2009) S. Dirks, M. Keeling, A Vision of Smarter Cities: How Cities Can Lead the Way into a Prosperous and Sustainable Future, vol. 8 (IBM Institute for Business Value, 2009)
132.
go back to reference J.M. Shapiro, Smart cities: quality of life, productivity, and the growth effects of human capital. The review of economics and statistics 88(2), 324–335 (2006)CrossRef J.M. Shapiro, Smart cities: quality of life, productivity, and the growth effects of human capital. The review of economics and statistics 88(2), 324–335 (2006)CrossRef
133.
go back to reference G. Werner-Allen, P. Swieskowski, M. Welsh, Motelab: a wireless sensor network testbed, in Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (IEEE Press, 2005), p. 68 G. Werner-Allen, P. Swieskowski, M. Welsh, Motelab: a wireless sensor network testbed, in Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (IEEE Press, 2005), p. 68
134.
go back to reference M. Doddavenkatappa, M.C. Chan, A.L. Ananda, Indriya: A low-cost, 3D wireless sensor network testbed, in Testbeds and Research Infrastructure. Development of Networks and Communities (Springer, 2012), pp. 302–316 M. Doddavenkatappa, M.C. Chan, A.L. Ananda, Indriya: A low-cost, 3D wireless sensor network testbed, in Testbeds and Research Infrastructure. Development of Networks and Communities (Springer, 2012), pp. 302–316
135.
go back to reference A. Burns et al., SHIMMER™—a wireless sensor platform for noninvasive biomedical research. Sens. J. 10(9), 1527–1534 (2010)CrossRef A. Burns et al., SHIMMER™—a wireless sensor platform for noninvasive biomedical research. Sens. J. 10(9), 1527–1534 (2010)CrossRef
137.
go back to reference G. Hackmann, W. Guo, G. Yan, Z. Sun, C. Lu, S. Dyke, Cyber-physical codesign of distributed structural health monitoring with wireless sensor networks. IEEE Trans. Parallel Distributed Syst. 25(1), 63–72 (2014)CrossRef G. Hackmann, W. Guo, G. Yan, Z. Sun, C. Lu, S. Dyke, Cyber-physical codesign of distributed structural health monitoring with wireless sensor networks. IEEE Trans. Parallel Distributed Syst. 25(1), 63–72 (2014)CrossRef
139.
go back to reference Z. Riaz, M. Arslan, A.K. Kiani, S. Azhar, CoSMoS: a BIM and wireless sensor based integrated solution for worker safety in confined spaces. Autom. Construct. 45, 96–106 (2014)CrossRef Z. Riaz, M. Arslan, A.K. Kiani, S. Azhar, CoSMoS: a BIM and wireless sensor based integrated solution for worker safety in confined spaces. Autom. Construct. 45, 96–106 (2014)CrossRef
140.
go back to reference E. Cañete, J. Chen, M. Díaz, L. Llopis, B. Rubio, Sensor4PRI: a sensor platform for the protection of railway infrastructures. Sensors 15(3), 4996–5019 (2015)CrossRef E. Cañete, J. Chen, M. Díaz, L. Llopis, B. Rubio, Sensor4PRI: a sensor platform for the protection of railway infrastructures. Sensors 15(3), 4996–5019 (2015)CrossRef
141.
go back to reference N. Poursafar, M.E.E. Alahi, S.C. Mukhopadhyay, Long-range wireless technologies for IoT applications: a review, in 11th International Conference on Sensing Technology (ICST) (2017), pp. 310–315. ISBN 978-1-5090-6526-4 N. Poursafar, M.E.E. Alahi, S.C. Mukhopadhyay, Long-range wireless technologies for IoT applications: a review, in 11th International Conference on Sensing Technology (ICST) (2017), pp. 310–315. ISBN 978-1-5090-6526-4
142.
go back to reference N. Afsarimanesh, M.E.E. Alahi, S.C. Mukhopadhyay, M. Kruger, A novel electrochemical biosensor for bone turnover detection based on molecular imprinting technology, in 11th International Conference on Sensing Technology (ICST) (2017), pp. 6–11. ISBN 978-1-5090-6526-4 N. Afsarimanesh, M.E.E. Alahi, S.C. Mukhopadhyay, M. Kruger, A novel electrochemical biosensor for bone turnover detection based on molecular imprinting technology, in 11th International Conference on Sensing Technology (ICST) (2017), pp. 6–11. ISBN 978-1-5090-6526-4
143.
go back to reference M.E.E. Alahi, N. Afsarimanesh, S.C. Mukhopadhyay, L. Burkitt, Development of the selectivity of nitrate sensors based on ion imprinted polymerization technique, in 2017 11th International Conference on Sensing Technology (ICST) (2017), pp. 531–536. ISBN 978-1-5090-6526-4 M.E.E. Alahi, N. Afsarimanesh, S.C. Mukhopadhyay, L. Burkitt, Development of the selectivity of nitrate sensors based on ion imprinted polymerization technique, in 2017 11th International Conference on Sensing Technology (ICST) (2017), pp. 531–536. ISBN 978-1-5090-6526-4
144.
go back to reference N. Afsarimanesh, M. E. E. Alahi, S.C. Mukhopadhyay, M. Kruger, P.-L. Yu, Development of molecular imprinted polymer interdigital sensor for C-terminal telopeptide of type I collagen, in 2016 10th International Conference on Sensing Technology (ICST) (IEEE, 2016), pp. 1–5 N. Afsarimanesh, M. E. E. Alahi, S.C. Mukhopadhyay, M. Kruger, P.-L. Yu, Development of molecular imprinted polymer interdigital sensor for C-terminal telopeptide of type I collagen, in 2016 10th International Conference on Sensing Technology (ICST) (IEEE, 2016), pp. 1–5
145.
go back to reference A. Nag, M.E.E. Alahi, S.C. Mukhopadhyay, IoT-based sensing system for phosphate detection using Graphite/PDMS sensors. Sens. Actuators A Phys. (2018) A. Nag, M.E.E. Alahi, S.C. Mukhopadhyay, IoT-based sensing system for phosphate detection using Graphite/PDMS sensors. Sens. Actuators A Phys. (2018)
146.
go back to reference N. Afsarimanesh, M.E.E. Alahi, S.C. Mukhopadhyay, M. Kruger. Development of IoT-based impedometric biosensor for point-of-care monitoring of bone loss. IEEE J. Emerg. Select. Topics Circ. Syst. (2018) N. Afsarimanesh, M.E.E. Alahi, S.C. Mukhopadhyay, M. Kruger. Development of IoT-based impedometric biosensor for point-of-care monitoring of bone loss. IEEE J. Emerg. Select. Topics Circ. Syst. (2018)
148.
go back to reference J. King, R. Bose, H.-I. Yang, S. Pickles, A. Helal, Atlas: a service-oriented sensor platform: Hardware and middleware to enable programmable pervasive spaces,” in 31st IEEE Conference on Local Computer Networks (IEEE, 2006), pp. 630–638 J. King, R. Bose, H.-I. Yang, S. Pickles, A. Helal, Atlas: a service-oriented sensor platform: Hardware and middleware to enable programmable pervasive spaces,” in 31st IEEE Conference on Local Computer Networks (IEEE, 2006), pp. 630–638
149.
go back to reference B. Zhou, S. Yang, T.H. Nguyen, T. Sun, K.T. Grattan, Wireless sensor network platform for intrinsic optical fiber pH sensors. Sens. J. 14(4), 1313–1320 (2014)CrossRef B. Zhou, S. Yang, T.H. Nguyen, T. Sun, K.T. Grattan, Wireless sensor network platform for intrinsic optical fiber pH sensors. Sens. J. 14(4), 1313–1320 (2014)CrossRef
150.
go back to reference S. Ferdoush, X. Li, Wireless sensor network system design using Raspberry Pi and Arduino for environmental monitoring applications. Proc. Comput. Sci. 34, 103–110 (2014)CrossRef S. Ferdoush, X. Li, Wireless sensor network system design using Raspberry Pi and Arduino for environmental monitoring applications. Proc. Comput. Sci. 34, 103–110 (2014)CrossRef
Metadata
Title
Literature Review
Authors
Md Eshrat E Alahi
Subhas Chandra Mukhopadhyay
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-20095-4_2

Premium Partner