Skip to main content
Top
Published in: Measurement Techniques 9/2016

01-12-2016

Local Physicomechanical Properties of Materials for Use in Calibration of Nanoindentation Instruments

Authors: Yu. I. Golovin, A. I. Tyurin, E. G. Aslanyan, T. S. Pirozhkova, M. O. Vorob’ev

Published in: Measurement Techniques | Issue 9/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Studies of variations in the hardness of representative materials of different classes over broad ranges of loads and depths of indentation are carried out. The usability of these materials is demonstrated and boundaries on the ranges of use of hardness meters produced from these materials for calibration of nanoindentation instruments are established.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
3.
go back to reference Yu. I. Golovin, Nanoindentation and Its Possibilities, Mashinostroenie, Moscow (2009). Yu. I. Golovin, Nanoindentation and Its Possibilities, Mashinostroenie, Moscow (2009).
4.
go back to reference A. S. Grashchenko, S. A. Kukushkin, and A. V. Osipov, “Nanoindentation and deformation properties of nanoscaled films of silicon carbide on silicon,” Pisma Zh. Tekh. Fiz., 40, Iss. 24, 53–59 (2014). A. S. Grashchenko, S. A. Kukushkin, and A. V. Osipov, “Nanoindentation and deformation properties of nanoscaled films of silicon carbide on silicon,” Pisma Zh. Tekh. Fiz., 40, Iss. 24, 53–59 (2014).
5.
go back to reference B. Bhushan, Biophysics of Human Hair. Structural, Nanomechanical and Nanotribological Studies, Springer-Verlag, Berlin (2010). B. Bhushan, Biophysics of Human Hair. Structural, Nanomechanical and Nanotribological Studies, Springer-Verlag, Berlin (2010).
6.
go back to reference W. D. Nix and H. Gao, “Indentation size effects in crystalline materials: a law for strain gradient plasticity,” J. Mech. Phys. Solids, 46, No. 3, 411–425 (1998).ADSCrossRefMATH W. D. Nix and H. Gao, “Indentation size effects in crystalline materials: a law for strain gradient plasticity,” J. Mech. Phys. Solids, 46, No. 3, 411–425 (1998).ADSCrossRefMATH
7.
go back to reference Yu. I. Golovin, V. M. Vasyukov, V. V. Korenkov, et al., “Dimensional effects in the hardness of Fcc metals in the micro- and nanodimensional regions,” Zh. Tekh. Fiz., 81, Iss. 5, 55–58 (2011). Yu. I. Golovin, V. M. Vasyukov, V. V. Korenkov, et al., “Dimensional effects in the hardness of Fcc metals in the micro- and nanodimensional regions,” Zh. Tekh. Fiz., 81, Iss. 5, 55–58 (2011).
8.
go back to reference Yu. I. Golovin, “Nanoindentation and mechanical properties of solids in submicro-volumes, their near-surface layers, and in films (survey),” Fiz. Tv. Tela, 50, No. 12, 2113–2141 (2008). Yu. I. Golovin, “Nanoindentation and mechanical properties of solids in submicro-volumes, their near-surface layers, and in films (survey),” Fiz. Tv. Tela, 50, No. 12, 2113–2141 (2008).
9.
go back to reference Yu. I. Golovin, A. I. Tyurin, and V. V. Khlebnikov, “Influence of regimes of dynamic nano-indentation on the highspeed hardness sensibility factor of bodies possessing different structures,” Zh. Tekh. Fiz., 75, Iss. 4, 91–95 (2005). Yu. I. Golovin, A. I. Tyurin, and V. V. Khlebnikov, “Influence of regimes of dynamic nano-indentation on the highspeed hardness sensibility factor of bodies possessing different structures,” Zh. Tekh. Fiz., 75, Iss. 4, 91–95 (2005).
10.
go back to reference Yu. I. Golovin, V. I. Ivolgin, A. I. Tyurin, et al., “On the relationship between monotonic and intermittent deformation of volumetric amorphous alloy ZR46.8Tl8CU7.5Nl10BE27.5 in nanoindentation,” Kristallografiya, 50, No. 2, 326–331 (2005). Yu. I. Golovin, V. I. Ivolgin, A. I. Tyurin, et al., “On the relationship between monotonic and intermittent deformation of volumetric amorphous alloy ZR46.8Tl8CU7.5Nl10BE27.5 in nanoindentation,” Kristallografiya, 50, No. 2, 326–331 (2005).
11.
go back to reference W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., 7, No. 6, 1564–1583 (1992).ADSCrossRef W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., 7, No. 6, 1564–1583 (1992).ADSCrossRef
12.
go back to reference W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements in methodology,” J. Mater. Res., 19, No. 1, 3–20 (2004).ADSCrossRef W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements in methodology,” J. Mater. Res., 19, No. 1, 3–20 (2004).ADSCrossRef
13.
go back to reference K. Herrmann, N. M. Jennett, S. Kuypers, et al., “Investigation of the properties of candidate reference materials suited for the calibration of nanoindentation instruments,” Zeitschr. Metallkunde, 94, No. 7, 802–806 (2003). K. Herrmann, N. M. Jennett, S. Kuypers, et al., “Investigation of the properties of candidate reference materials suited for the calibration of nanoindentation instruments,” Zeitschr. Metallkunde, 94, No. 7, 802–806 (2003).
14.
go back to reference ISO 14577, Metallic Minerals – Instrumented Indentation Test for Hardness and Materials Parameters, pp. 1–4. ISO 14577, Metallic MineralsInstrumented Indentation Test for Hardness and Materials Parameters, pp. 1–4.
15.
go back to reference GOST 8.748–2011, Metals and Alloys. Measurement of Hardness and Other Characteristics of Materials in Instrumented Indentation. Part 1. Testing Method. GOST 8.748–2011, Metals and Alloys. Measurement of Hardness and Other Characteristics of Materials in Instrumented Indentation. Part 1. Testing Method.
16.
go back to reference A. E. Aslanyan, E. G. Aspanyan, S. M. Gavrilkin, and A. N. Shchipunov, “A study of the irregularity of hardness measures for transmission of Martens scales in nanoindentation,” Izmer. Tekhn., No. 1, 32–34 (2015). A. E. Aslanyan, E. G. Aspanyan, S. M. Gavrilkin, and A. N. Shchipunov, “A study of the irregularity of hardness measures for transmission of Martens scales in nanoindentation,” Izmer. Tekhn., No. 1, 32–34 (2015).
17.
go back to reference E. G. Aslanyan and A. S. Doynikov, “On the expression of the uncertainty of results of measurements of hardness,” Zakonodat. Prikl. Metrol., No. 4, 38–42 (2002). E. G. Aslanyan and A. S. Doynikov, “On the expression of the uncertainty of results of measurements of hardness,” Zakonodat. Prikl. Metrol., No. 4, 38–42 (2002).
Metadata
Title
Local Physicomechanical Properties of Materials for Use in Calibration of Nanoindentation Instruments
Authors
Yu. I. Golovin
A. I. Tyurin
E. G. Aslanyan
T. S. Pirozhkova
M. O. Vorob’ev
Publication date
01-12-2016
Publisher
Springer US
Published in
Measurement Techniques / Issue 9/2016
Print ISSN: 0543-1972
Electronic ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-016-1066-2

Other articles of this Issue 9/2016

Measurement Techniques 9/2016 Go to the issue