Skip to main content
Top

2020 | OriginalPaper | Chapter

5. Lösung linearer Gleichungssysteme

Authors : Joel H. Ferziger, Milovan Perić, Robert L. Street

Published in: Numerische Strömungsmechanik

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

In diesem Kapitel werden Methoden zur Lösung der algebraischen Gleichungssysteme beschrieben, die sich aus der Diskretisierung von Transportgleichungen ergeben. Direkte Methoden werden kurz beschrieben, aber der größte Teil des Kapitels ist den iterativen Lösungstechniken gewidmet. Unvollständige LU-Zerlegung, Methoden der konjugierten Gradienten und Mehrgitterverfahren werden besonders berücksichtigt. Es werden auch Ansätze zur Lösung gekoppelter und nichtlinearer Systeme beschrieben, einschließlich der Probleme der Unterrelaxation und der Konvergenzkriterien. Verschiedene Löser können von der Buchwebseite (www.​cfd-peric.​de) heruntergeladen werden.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Bini und Meini (2009) präsentieren die Geschichte der Methode der zyklischen Reduktion, ihre Erweiterungen, neue Beweise und Formeln. Sie wird als Glätter für Multigrid-Anwendungen auf hochparallelen Grafikprozessoren (GPUs) verwendet, die jetzt für die Berechnung von Fluidströmungen verwendet werden (Göddeke und Strzodka 2011).
 
2
Zum Beispiel, \(\varvec{\phi }_3=\varvec{\phi }_0 + \varvec{\rho }^0 + (I-A)\varvec{\rho }^0 + (I-A)(I-A)\varvec{\rho }^0\).
 
3
Die Diskussion in diesem Buch umfasst lineare Systeme. Kap. 14 von Shewchuk (1994) beschreibt die nichtlineare Methode der konjugierten Gradienten und ihre Vorkonditionierung.
 
4
Für eine einfache rechteckige Geometrie und Dirichlet-Randbedingungen (Brazier 1974): \(\omega =2/(1+\mathrm{sin}(\pi / N_{CV}))\).
 
Literature
go back to reference Armfield, S. & Street, R. (2004). Modified fractional-step methods for the Navier-Stokes equations. ANZIAM J., 45 (E), C364–C377. Armfield, S. & Street, R. (2004). Modified fractional-step methods for the Navier-Stokes equations. ANZIAM J., 45 (E), C364–C377.
go back to reference Bini, D. A. & Meini, D.(2009). The cyclic reduction algorithm: from Poisson equation to stochastic processes and beyond. Numer. Algor., 51, 23–60.ADSCrossRef Bini, D. A. & Meini, D.(2009). The cyclic reduction algorithm: from Poisson equation to stochastic processes and beyond. Numer. Algor., 51, 23–60.ADSCrossRef
go back to reference Brazier, P. H. (1974). An optimum SOR procedure for the solution of elliptic partial differential equations with any domain or coefficient set. Comput. Methods Appl. Mech. Engrg., 3, 335–347.ADSMathSciNetCrossRef Brazier, P. H. (1974). An optimum SOR procedure for the solution of elliptic partial differential equations with any domain or coefficient set. Comput. Methods Appl. Mech. Engrg., 3, 335–347.ADSMathSciNetCrossRef
go back to reference Briggs, W. L., Henson, V. E. & McCormick, S. F.(2000). A multigrid tutorial (2. Aufl.). Philadelphia: Society for Industrial and Applied Mathematics (SIAM). Briggs, W. L., Henson, V. E. & McCormick, S. F.(2000). A multigrid tutorial (2. Aufl.). Philadelphia: Society for Industrial and Applied Mathematics (SIAM).
go back to reference Deng, G. B., Piquet, J., Queutey, P. & Visonneau, M. (1994). Incompressible flow calculations with a consistent physical interpolation finite volume approach. Computers Fluids, 23, 1029–1047.CrossRef Deng, G. B., Piquet, J., Queutey, P. & Visonneau, M. (1994). Incompressible flow calculations with a consistent physical interpolation finite volume approach. Computers Fluids, 23, 1029–1047.CrossRef
go back to reference Ferziger, J. H. (1998). Numerical methods for engineering application (2. Aufl.). New York: Wiley-Interscience.MATH Ferziger, J. H. (1998). Numerical methods for engineering application (2. Aufl.). New York: Wiley-Interscience.MATH
go back to reference Fletcher, R. (1976). Conjugate gradient methods for indefinite systems. Lecture Notes in Mathematics, 506, 773–789.MathSciNetMATH Fletcher, R. (1976). Conjugate gradient methods for indefinite systems. Lecture Notes in Mathematics, 506, 773–789.MathSciNetMATH
go back to reference Galpin, P. F. & Raithby, G. D. (1986). Numerical solution of problems in incompressible fluid flow: treatment of the temperature-velocity coupling. Numer. Heat Transfer. 10, 105–129.ADSCrossRef Galpin, P. F. & Raithby, G. D. (1986). Numerical solution of problems in incompressible fluid flow: treatment of the temperature-velocity coupling. Numer. Heat Transfer. 10, 105–129.ADSCrossRef
go back to reference Göddeke, D. & Strzodka, R. (2011). Cyclic reduction tridiagonal solvers on GPUs applied to mixed-precision multigrid. IEEE Trans. on Parallel and Distributed Sys., 22, 22–32. Göddeke, D. & Strzodka, R. (2011). Cyclic reduction tridiagonal solvers on GPUs applied to mixed-precision multigrid. IEEE Trans. on Parallel and Distributed Sys., 22, 22–32.
go back to reference Golub, G. H. & van Loan, C. F. (1996). Matrix computations (3.Aufl.), Baltimore: Johns Hopkins Univ. Press. Golub, G. H. & van Loan, C. F. (1996). Matrix computations (3.Aufl.), Baltimore: Johns Hopkins Univ. Press.
go back to reference Hackbusch, W. (2003). Multi-grid methods and applications (2nd Printing). Berlin: Springer. Hackbusch, W. (2003). Multi-grid methods and applications (2nd Printing). Berlin: Springer.
go back to reference Hageman, L. A. & Young, D. M. (2004). Applied iterative methods. Mineola, NY: Dover Publications. Hageman, L. A. & Young, D. M. (2004). Applied iterative methods. Mineola, NY: Dover Publications.
go back to reference Khosla, P. K. & Rubin, S. G. (1974). A diagonally dominant second-order accurate implicit scheme. Computers Fluids, 2, 207–209.CrossRef Khosla, P. K. & Rubin, S. G. (1974). A diagonally dominant second-order accurate implicit scheme. Computers Fluids, 2, 207–209.CrossRef
go back to reference Leister, H. -J. & Perić, M. (1994). Vectorized strongly implicit solving procedure for seven-diagonal coefficient matrix. Int. J. Numer. Meth. Heat Fluid Flow. 4, 159–172.CrossRef Leister, H. -J. & Perić, M. (1994). Vectorized strongly implicit solving procedure for seven-diagonal coefficient matrix. Int. J. Numer. Meth. Heat Fluid Flow. 4, 159–172.CrossRef
go back to reference Patankar, S. V. (1980). Numerical heat transfer and fluid flow. New York: McGraw-Hill.MATH Patankar, S. V. (1980). Numerical heat transfer and fluid flow. New York: McGraw-Hill.MATH
go back to reference Perić, M. (1987). Efficient semi-implicit solving algorithm for nine-diagonal coefficient matrix. Numer. Heat Transfer. 11, 251–279.ADSCrossRef Perić, M. (1987). Efficient semi-implicit solving algorithm for nine-diagonal coefficient matrix. Numer. Heat Transfer. 11, 251–279.ADSCrossRef
go back to reference Press, W. H., Teukolsky, S. A., Vettering, W. T. & Flannery, B. P. (2007). Numerical recipes: the art of scientific computing (3. Aufl.), Cambridge: Cambridge Univ. Press. Press, W. H., Teukolsky, S. A., Vettering, W. T. & Flannery, B. P. (2007). Numerical recipes: the art of scientific computing (3. Aufl.), Cambridge: Cambridge Univ. Press.
go back to reference Ruge, J. W., & Stüben, K. (1987). Algebraic multigrid (AMG). In S. F. Mc-Cormick (Hrsg.), Multigrid Methods (S. 73-130). SIAM, Philadelphia. Ruge, J. W., & Stüben, K. (1987). Algebraic multigrid (AMG). In S. F. Mc-Cormick (Hrsg.), Multigrid Methods (S. 73-130). SIAM, Philadelphia.
go back to reference Saad, Y. (2003). Iterative methods for sparse linear systems (2. Aufl.), Philadelphia: Society for Industrial and Applied Mathematics (SIAM). Saad, Y. (2003). Iterative methods for sparse linear systems (2. Aufl.), Philadelphia: Society for Industrial and Applied Mathematics (SIAM).
go back to reference Saad, Y. & Schultz, M. H. (1986). GMRES: a generalized residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7, 856–869.MathSciNetCrossRef Saad, Y. & Schultz, M. H. (1986). GMRES: a generalized residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7, 856–869.MathSciNetCrossRef
go back to reference Schneider, G. E. & Zedan, M. (1981). A modified strongly implicit procedure for the numerical solution of field problems. Numer. Heat Transfer. 4, 1–19.ADSCrossRef Schneider, G. E. & Zedan, M. (1981). A modified strongly implicit procedure for the numerical solution of field problems. Numer. Heat Transfer. 4, 1–19.ADSCrossRef
go back to reference Sonneveld, P. (1989). CGS, a fast Lanczos type solver for non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 10, 36–52.MathSciNetCrossRef Sonneveld, P. (1989). CGS, a fast Lanczos type solver for non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 10, 36–52.MathSciNetCrossRef
go back to reference Stone, H. L. (1968). Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J. Numer. Anal., 5, 530–558.ADSMathSciNetCrossRef Stone, H. L. (1968). Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J. Numer. Anal., 5, 530–558.ADSMathSciNetCrossRef
go back to reference van der Vorst, H. A. & Sonneveld, P. (1990). CGSTAB, a more smoothly converging variant of CGS (Bericht Nr. 90–50. Delft, NL: Delft University of Technology. van der Vorst, H. A. & Sonneveld, P. (1990). CGSTAB, a more smoothly converging variant of CGS (Bericht Nr. 90–50. Delft, NL: Delft University of Technology.
go back to reference van der Vorst, H. A. (1992). BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput., 13, 631–644.CrossRef van der Vorst, H. A. (1992). BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput., 13, 631–644.CrossRef
go back to reference van der Vorst, H. A. (2002). Efficient and reliable iterative methods for linear systems. J. Comput. Appl. Math.149. 251–265.ADSMathSciNetCrossRef van der Vorst, H. A. (2002). Efficient and reliable iterative methods for linear systems. J. Comput. Appl. Math.149. 251–265.ADSMathSciNetCrossRef
go back to reference Watkins, D. S. (2010). Fundamentals of matrix computations (3. Aufl.), New York: Wiley-Interscience. Watkins, D. S. (2010). Fundamentals of matrix computations (3. Aufl.), New York: Wiley-Interscience.
go back to reference Weiss, J. M., Maruszewski, J. P. & Smith, W. A. (1999). Implicit solution of preconditioned Navier-Stokes equations using algebraic multigrid. AIAA J., 37, 29–36.ADSCrossRef Weiss, J. M., Maruszewski, J. P. & Smith, W. A. (1999). Implicit solution of preconditioned Navier-Stokes equations using algebraic multigrid. AIAA J., 37, 29–36.ADSCrossRef
Metadata
Title
Lösung linearer Gleichungssysteme
Authors
Joel H. Ferziger
Milovan Perić
Robert L. Street
Copyright Year
2020
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46544-8_5

Premium Partner