Skip to main content
Top

2017 | OriginalPaper | Chapter

Logistic Regression Modeling on Mass Spectrometry Data in Proteomics Case-Control Discriminant Studies

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present an adaption of the logistic regression model for the evaluation of mass spectrometry data in proteomics case-control studies. We parameterize the predictor as a linear combination of Gaussian basis functions along the mass/charge axis. The location of these basis functions is treated as a random variable and must be estimated from the data. A fully Bayesian implementation is pursued, which allows the number of functional components within the regression parameter vector to be specified as a random variable. Calculations are implemented through birth–death process modeling. We evaluate the model on data from a block-randomized case-control designed experiment, as well as on a proteomic model-mouse study, which were both carried out at the Leiden University Medical Center. The first experiment compares mass spectra of serum samples of 63 colon cancer patients with spectra from 50 control patients. We present a-posteriori analyses of the fitted models which allow researchers to select specific spectral regions for further investigation and identification of the associated differentially expressed peptides. A sensitivity study is presented which links some of our results to those which may be obtained through standard maximum likelihood logistic regression on principal components reduction for mass spectral data. The second experiment contrasts proteomic spectra from 18 dystrophin-deficient mdx mice with those from 74 controls.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88(422), 669–679.MathSciNetCrossRefMATH Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88(422), 669–679.MathSciNetCrossRefMATH
3.
go back to reference Coombes, K. R., Kooman, J. M., Baggerly, K. A., & Kobayashi, R. (2005). Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionisation by denoising spectra with the undecimated discrete wavelet transform. Proteomics, 5, 4107–4117.CrossRef Coombes, K. R., Kooman, J. M., Baggerly, K. A., & Kobayashi, R. (2005). Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionisation by denoising spectra with the undecimated discrete wavelet transform. Proteomics, 5, 4107–4117.CrossRef
4.
go back to reference de Noo, M. E., Mertens, B. J., Ozalp, A., Bladergroen, M. R., van der Werff, M. P. J., van de Velde, C. J., et al. (2006). Detection of colorectal cancer using MALDI-TOF serum protein profiling. European Journal of Cancer, 42(8), 1068–1076.CrossRef de Noo, M. E., Mertens, B. J., Ozalp, A., Bladergroen, M. R., van der Werff, M. P. J., van de Velde, C. J., et al. (2006). Detection of colorectal cancer using MALDI-TOF serum protein profiling. European Journal of Cancer, 42(8), 1068–1076.CrossRef
5.
go back to reference Denison, D. G. T., Holmes, C. C., Mallick, B. K., & Smith, A. F. M. (2002). Bayesian methods for nonlinear classification and regression. New York: Wiley.MATH Denison, D. G. T., Holmes, C. C., Mallick, B. K., & Smith, A. F. M. (2002). Bayesian methods for nonlinear classification and regression. New York: Wiley.MATH
7.
go back to reference Eilers, P. H. (2004). Parametric time warping. Analytical Chemistry, 76, 404–11.CrossRef Eilers, P. H. (2004). Parametric time warping. Analytical Chemistry, 76, 404–11.CrossRef
8.
go back to reference Goldstein, M., & Smith, A. F. M. (1974). Ridge-type estimators for regression analysis. Journal of the Royal Statistical Society, B, 36(2), 284–291.MathSciNetMATH Goldstein, M., & Smith, A. F. M. (1974). Ridge-type estimators for regression analysis. Journal of the Royal Statistical Society, B, 36(2), 284–291.MathSciNetMATH
9.
go back to reference Green, P. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711–732.MathSciNetCrossRefMATH Green, P. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711–732.MathSciNetCrossRefMATH
10.
go back to reference Holmes, C. C., & Held, L. (2006). Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis, 1(1), 145–168.MathSciNetCrossRefMATH Holmes, C. C., & Held, L. (2006). Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis, 1(1), 145–168.MathSciNetCrossRefMATH
11.
go back to reference Jeffreys, H. (1967). Theory of probability. Oxford: Oxford University Press.MATH Jeffreys, H. (1967). Theory of probability. Oxford: Oxford University Press.MATH
12.
go back to reference Krzanowski, W. J., Jonathan, P., McCarthy, W. V., & Thomas, M. R. (1995). Discriminant analysis with singular covariance matrices: methods and applications to spectroscopic data. Applied Statistics, 44(1), 101–115.CrossRefMATH Krzanowski, W. J., Jonathan, P., McCarthy, W. V., & Thomas, M. R. (1995). Discriminant analysis with singular covariance matrices: methods and applications to spectroscopic data. Applied Statistics, 44(1), 101–115.CrossRefMATH
14.
go back to reference Martens, H., & Naes, T. (1989). Multivariate calibration. Chichester: Wiley.MATH Martens, H., & Naes, T. (1989). Multivariate calibration. Chichester: Wiley.MATH
15.
go back to reference Mertens, B. J. A. (2016). Transformation, normalization and batch effect in the analysis of mass spectrometry data for omics studies. In Statistical analysis of proteomics, metabolomics, and lipidomics data using mass spectrometry. New York: Springer. Mertens, B. J. A. (2016). Transformation, normalization and batch effect in the analysis of mass spectrometry data for omics studies. In Statistical analysis of proteomics, metabolomics, and lipidomics data using mass spectrometry. New York: Springer.
16.
go back to reference Naes, T., Isaksson, T., Fearn, T., & Davies, T. (2002). A user-friendly guide to multivariate calibration and classification. Chichester: NIR Publications. Naes, T., Isaksson, T., Fearn, T., & Davies, T. (2002). A user-friendly guide to multivariate calibration and classification. Chichester: NIR Publications.
17.
go back to reference Petricoin, E. F. III, Ardekani, A. M., Hitt, B. A., Levine, P. J., Fusaro, V. A., Steinberg, S. M., et al. (2002). Use of proteomic patterns in serum to identify ovarian cancer. Lancet, 359, 572–577.CrossRef Petricoin, E. F. III, Ardekani, A. M., Hitt, B. A., Levine, P. J., Fusaro, V. A., Steinberg, S. M., et al. (2002). Use of proteomic patterns in serum to identify ovarian cancer. Lancet, 359, 572–577.CrossRef
18.
19.
go back to reference Richardson, S., & Green, P. (1997). On Bayesian analysis of mixtures with an unknown number of components (with discussion). Journal of the Royal Statistical Society, B, 59, 731–792.MathSciNetCrossRefMATH Richardson, S., & Green, P. (1997). On Bayesian analysis of mixtures with an unknown number of components (with discussion). Journal of the Royal Statistical Society, B, 59, 731–792.MathSciNetCrossRefMATH
20.
go back to reference Stone, M., & Jonathan, P. (1993). Statistical thinking and technique for QSAR and related studies. Part 1: General theory. Journal of Chemometrics, 7, 455–475.CrossRef Stone, M., & Jonathan, P. (1993). Statistical thinking and technique for QSAR and related studies. Part 1: General theory. Journal of Chemometrics, 7, 455–475.CrossRef
21.
go back to reference Stone, M., & Jonathan, P. (1994). Statistical thinking and technique for QSAR and related studies. Part 2: Specific methods. Journal of Chemometrics, 8, 1–20.CrossRef Stone, M., & Jonathan, P. (1994). Statistical thinking and technique for QSAR and related studies. Part 2: Specific methods. Journal of Chemometrics, 8, 1–20.CrossRef
Metadata
Title
Logistic Regression Modeling on Mass Spectrometry Data in Proteomics Case-Control Discriminant Studies
Author
Bart J. A. Mertens
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-45809-0_12

Premium Partner