Skip to main content
Top
Published in: Archive of Applied Mechanics 8/2018

06-04-2018 | Original

Longitudinal impact into viscoelastic media

Authors: George A. Gazonas, Raymond A. Wildman, David A. Hopkins, Michael J. Scheidler

Published in: Archive of Applied Mechanics | Issue 8/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We consider several one-dimensional impact problems involving finite or semi-infinite, linear elastic flyers that collide with and adhere to a finite stationary linear viscoelastic target backed by a semi-infinite linear elastic half-space. The impact generates a shock wave in the target which undergoes multiple reflections from the target boundaries. Laplace transforms with respect to time, together with impact boundary conditions derived in our previous work, are used to derive explicit closed-form solutions for the stress and particle velocity in the Laplace transform domain at any point in the target. For several stress relaxation functions of the Wiechert (Prony series) type, a modified Dubner–Abate–Crump algorithm is used to numerically invert those solutions to the time domain. These solutions are compared with numerical solutions obtained using both a finite-difference method and the commercial finite element code, COMSOL Multiphysics. The final value theorem for Laplace transforms is used to derive new explicit analytical expressions for the long-time asymptotes of the stress and velocity in viscoelastic targets; these results are useful for the verification of viscoelastic impact simulations taken to long observation times.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Since the flyer and backing impedances are equal, \(\theta =1/2\) in Eq. (71), so that \(v(x,\infty )= V_0/2\).
 
2
cf. Gurtin and Sternberg [10], Christensen [11], Wineman and Rajagopal [12], Walton [13] and Willis [14].
 
3
\(\mu \) is the stress relaxation function in shear, i.e., \(\mu (t)\) is the shear stress at time \(t\ge 0\) due to a “unit” Heaviside step in shear strain at time 0; cf also Eq. (12). A physical interpretation of \(\lambda \) is discussed in Sect. 2.2.
 
4
Simpler but analogous results hold for an isotropic linear elastic material. The momentum balance equation (19) is unchanged, and the only nonzero stress components are \(\pm \,\sigma _{11} = G\, \varepsilon _{11}\) and \(\pm \,\sigma _{22} = \pm \,\sigma _{33} = \lambda \,\varepsilon _{11}\), where G and \(\lambda \) are constants.
 
5
Actually, Eq. (21) is valid if \({\dot{\varepsilon }}_{11}\) is interpreted as a generalized derivative (cf. page 74 of Fodor [15]), although we will not use this interpretation here.
 
6
In section 6.2 of Gazonas et al. [1], it was shown that tensile stresses can arise temporarily in an elastic target in certain cases; it is necessary but not sufficient that the impedance of the target exceed the impedance of the elastic backing. A similar situation is expected for viscoelastic targets as well. That this tensile state would necessarily be temporary follows from a result established later in this paper, namely that the long-time asymptote of the longitudinal stress in a viscoelastic target is compressive.
 
7
This is a common convention in the shock physics literature; cf. Nunziato et al. [17, 18]. The strain is often taken positive in compression as well, although we do not do so here.
 
8
cf. Coleman, Gurtin and Herrera [19] and Theorem 5 of Fisher and Gurtin [20]. This speed governs shock waves and continuous waves (e.g., acceleration waves) in linear viscoelastic materials. Observe that it is independent of the deformation ahead of the wave front.
 
9
This relation is not valid for a finite thickness target. The appropriate impact boundary condition for that case is considered in Sect. 6.
 
10
cf. Widder [21], Fodor [15], Kaplan [22], LePage [23], Wylie [24] and Doetsch [25].
 
11
See Eq. (119) in “Appendix C,” with \(\sigma _1\) replaced by \(u_1\).
 
12
cf. Fodor [15, §10(b)], Kaplan [22, §6.11], LePage [23, §10.16, 12.7], Wylie [24, §7.4] and Doetsch [25, §34, 35, 37].
 
13
Proofs can be found in Kaplan [22, Thm. 13 in §6.11] for the case where f is piecewise continuous and in Doetsch [25, Thm. 34.3] for the general case.
 
14
Indeed, by Theorem 34.1 in Doetsch [25], this assumption on f implies that \(s{\overline{f}}(s)\thicksim \,a\,\Gamma (b+1)/s^{\,b}\) as \(s\rightarrow 0\), where \(\Gamma \) denotes the gamma function. Then the requirement that \(\lim _{\,s\rightarrow 0} \, s{\overline{f}}(s)\) exists implies that either \(b=0\) or \(b<0\), in which case the final value relation (65) holds with both limits equal to a or 0, respectively.
 
15
The finite flyer length \(k=5\) in the table is used for the results in Sect. 6.1.
 
16
Unless \(\dot{v_1}(x,t)\) is regarded as a generalized derivative; cf. Fodor [15, Eq. (6.31)].
 
17
cf. Fodor [15, Eq. (6.32)], LePage [23, Eqs. (12–35)], and for single jumps Chadwick and Powdrill [31] and Martin [32].
 
18
Observe that up to this point we have not made use of the fact that \(\sigma _1\) is a stress component; hence, Eq. (119) holds for other piecewise continuous and piecewise smooth functions with jumps across the shock only. See also the interesting papers by Chadwick and Powdrill [31] and Martin [32] for the multi-dimensional analogue of Eq. (119) for a single jump; i.e., they do not treat the case of multiple reflections. Also, by (119) it follows that we may interchange the Laplace transform and the partial derivative with respect to x for continuous and piecewise smooth functions.
 
19
cf. Coleman, Gurtin and Herrera [19] and Nunziato et al. [17, 18].
 
Literature
1.
go back to reference Gazonas, G.A., Scheidler, M.J., Velo, A.P.: Exact analytical solutions for elastodynamic impact. Int. J. Solids Struct. 75–76, 172–187 (2015)CrossRef Gazonas, G.A., Scheidler, M.J., Velo, A.P.: Exact analytical solutions for elastodynamic impact. Int. J. Solids Struct. 75–76, 172–187 (2015)CrossRef
2.
go back to reference Gazonas, G.A., Velo, A.P., Wildman, R.A.: Asymptotic impact behavior of Goupillaud-type layered elastic media. Int. J. Solids Struct. 96, 38–47 (2016)CrossRef Gazonas, G.A., Velo, A.P., Wildman, R.A.: Asymptotic impact behavior of Goupillaud-type layered elastic media. Int. J. Solids Struct. 96, 38–47 (2016)CrossRef
3.
go back to reference Gazonas, G.A., Wildman, R.A., Hopkins, D.A.: Elastodynamic impact into piezoelectric media. U.S. Army Research Laboratory, ARL-TR-7056, Sept (2014) Gazonas, G.A., Wildman, R.A., Hopkins, D.A.: Elastodynamic impact into piezoelectric media. U.S. Army Research Laboratory, ARL-TR-7056, Sept (2014)
4.
go back to reference Gazonas, G.A., Wildman, R.A., Hopkins, D.A., Scheidler, M.J.: Longitudinal impact of piezoelectric media. Arch. Appl. Mech. 86, 497–515 (2016)CrossRefMATH Gazonas, G.A., Wildman, R.A., Hopkins, D.A., Scheidler, M.J.: Longitudinal impact of piezoelectric media. Arch. Appl. Mech. 86, 497–515 (2016)CrossRefMATH
5.
go back to reference Lee, E.H., Kanter, I.: Wave propagation in finite rods of viscoelastic material. J. Appl. Phys. 24(9), 1115–1122 (1953)CrossRefMATH Lee, E.H., Kanter, I.: Wave propagation in finite rods of viscoelastic material. J. Appl. Phys. 24(9), 1115–1122 (1953)CrossRefMATH
6.
7.
go back to reference Behring, A.G., Oetting, R.B.: On the longitudinal impact of two, thin, viscoelastic rods. J. Appl. Mech. 37(2), 310–314 (1970)CrossRef Behring, A.G., Oetting, R.B.: On the longitudinal impact of two, thin, viscoelastic rods. J. Appl. Mech. 37(2), 310–314 (1970)CrossRef
8.
go back to reference Musa, A.B.: Numerical solution of wave propagation in viscoelastic rods (standard linear solid model). In: 4th International Conference on Energy and Environment 2013 (ICEE 2013), IOP Conference Series: Earth and Environmental Science, vol. 16; Putrajaya, Malaysia, pp. 1–6 (2013) Musa, A.B.: Numerical solution of wave propagation in viscoelastic rods (standard linear solid model). In: 4th International Conference on Energy and Environment 2013 (ICEE 2013), IOP Conference Series: Earth and Environmental Science, vol. 16; Putrajaya, Malaysia, pp. 1–6 (2013)
9.
go back to reference COMSOL Multiphysics Reference Manual, Version 4.4. COMSOL, Inc., Burlington (2013) COMSOL Multiphysics Reference Manual, Version 4.4. COMSOL, Inc., Burlington (2013)
11.
go back to reference Christensen, R.M.: Theory of Viscoelasticity: An Introduction. Academic Press, New York (1982) Christensen, R.M.: Theory of Viscoelasticity: An Introduction. Academic Press, New York (1982)
12.
go back to reference Wineman, A.S., Rajagopal, K.R.: Mechanical Response of Polymers: An Introduction. Cambridge University Press, New York (2000) Wineman, A.S., Rajagopal, K.R.: Mechanical Response of Polymers: An Introduction. Cambridge University Press, New York (2000)
13.
go back to reference Walton, J.R.: On the steady-state propagation of an anti-plane shear crack in an infinite general linearly viscoelastic solid. Q. Appl. Math. 40(1), 37–52 (1982)CrossRefMATH Walton, J.R.: On the steady-state propagation of an anti-plane shear crack in an infinite general linearly viscoelastic solid. Q. Appl. Math. 40(1), 37–52 (1982)CrossRefMATH
14.
go back to reference Willis, J.R.: Crack propagation in viscoelastic media. J. Mech. Phys. Solids 15, 229–240 (1967)CrossRefMATH Willis, J.R.: Crack propagation in viscoelastic media. J. Mech. Phys. Solids 15, 229–240 (1967)CrossRefMATH
15.
go back to reference Fodor, G.: Laplace Transforms in Engineering. Akadémiai Kiadó, Budapest (1965)MATH Fodor, G.: Laplace Transforms in Engineering. Akadémiai Kiadó, Budapest (1965)MATH
16.
go back to reference Schapery, R.A.: Viscoelastic behavior and analysis of composite materials. In: Sendeckyj, G.P. (ed.) Mechanics of Composite Materials, vol. 2, pp. 85–168. Academic Press, New York (1974) Schapery, R.A.: Viscoelastic behavior and analysis of composite materials. In: Sendeckyj, G.P. (ed.) Mechanics of Composite Materials, vol. 2, pp. 85–168. Academic Press, New York (1974)
17.
go back to reference Nunziato, J.W., Schuler, K.W.: Shock pulse attenuation in a nonlinear viscoelastic solid. J. Mech. Phys. Solids 21, 447–457 (1973)CrossRef Nunziato, J.W., Schuler, K.W.: Shock pulse attenuation in a nonlinear viscoelastic solid. J. Mech. Phys. Solids 21, 447–457 (1973)CrossRef
18.
go back to reference Nunziato, J.W., Walsh, E.K., Schuler, K.W., Barker, L.M.: Wave propagation in nonlinear viscoelastic solids. In: Truesdell, C. (ed.) Handbuch Der Physik; Volume VIa/4 Mechanics of Solids IV, pp. 1–108. Springer, New York (1974) Nunziato, J.W., Walsh, E.K., Schuler, K.W., Barker, L.M.: Wave propagation in nonlinear viscoelastic solids. In: Truesdell, C. (ed.) Handbuch Der Physik; Volume VIa/4 Mechanics of Solids IV, pp. 1–108. Springer, New York (1974)
19.
go back to reference Coleman, B.D., Gurtin, M.E., Herrera, R.I.: Waves in materials with memory, I. The velocity of one-dimensional shock and acceleration waves. Arch. Ration. Mech. Anal. 19, 1–19 (1965)MathSciNetCrossRefMATH Coleman, B.D., Gurtin, M.E., Herrera, R.I.: Waves in materials with memory, I. The velocity of one-dimensional shock and acceleration waves. Arch. Ration. Mech. Anal. 19, 1–19 (1965)MathSciNetCrossRefMATH
20.
21.
go back to reference Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1946) Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1946)
22.
go back to reference Kaplan, W.: Operational Methods for Linear Systems. Addison-Wesley, Reading (1962)MATH Kaplan, W.: Operational Methods for Linear Systems. Addison-Wesley, Reading (1962)MATH
23.
go back to reference LePage, W.R.: Complex Variables and the Laplace Transform for Engineers. Dover Publications, New York (1980)MATH LePage, W.R.: Complex Variables and the Laplace Transform for Engineers. Dover Publications, New York (1980)MATH
24.
go back to reference Wylie, C.R.: Advanced Engineering Mathematics, 3rd edn. McGraw-Hill, New York (1966)MATH Wylie, C.R.: Advanced Engineering Mathematics, 3rd edn. McGraw-Hill, New York (1966)MATH
25.
go back to reference Doetsch, G.: Introduction to the Theory and Application of the Laplace Transform. Springer, New York (1974)MATH Doetsch, G.: Introduction to the Theory and Application of the Laplace Transform. Springer, New York (1974)MATH
26.
go back to reference Mathematica Edition: Version 10.3. Wolfram Research, Champaign (2015) Mathematica Edition: Version 10.3. Wolfram Research, Champaign (2015)
27.
go back to reference Laverty, R., Gazonas, G.A.: An improvement to the Fourier series method for inversion of Laplace transforms applied to elastic and viscoelastic waves. Int. J. Comput. Meth. 3(1), 57–69 (2006)MathSciNetCrossRefMATH Laverty, R., Gazonas, G.A.: An improvement to the Fourier series method for inversion of Laplace transforms applied to elastic and viscoelastic waves. Int. J. Comput. Meth. 3(1), 57–69 (2006)MathSciNetCrossRefMATH
28.
go back to reference MATLAB 9.2.0. The MathWorks, Inc., Natick, Massachusetts, United States (2017) MATLAB 9.2.0. The MathWorks, Inc., Natick, Massachusetts, United States (2017)
29.
30.
go back to reference Knauss, W.G., Zhao, J.: Improved relaxation time coverage in ramp-strain histories. Mech. Time Depend. Mater. 11, 199–216 (2007)CrossRef Knauss, W.G., Zhao, J.: Improved relaxation time coverage in ramp-strain histories. Mech. Time Depend. Mater. 11, 199–216 (2007)CrossRef
31.
go back to reference Chadwick, P., Powdrill, B.: Application of the Laplace transform method to wave motions involving strong discontinuities. Proc. Camb. Philos. Soc. 60, 313–324 (1964)MathSciNetCrossRefMATH Chadwick, P., Powdrill, B.: Application of the Laplace transform method to wave motions involving strong discontinuities. Proc. Camb. Philos. Soc. 60, 313–324 (1964)MathSciNetCrossRefMATH
33.
go back to reference Faciŭ, C., Molinari, A.: On the longitudinal impact of two phase transforming bars. Elastic versus a rate-type approach. Part II: the rate-type case. Int. J. Solids Struct. 43, 523–550 (2006)CrossRefMATH Faciŭ, C., Molinari, A.: On the longitudinal impact of two phase transforming bars. Elastic versus a rate-type approach. Part II: the rate-type case. Int. J. Solids Struct. 43, 523–550 (2006)CrossRefMATH
34.
go back to reference Critescu, N., Suliciu, I.: Viscoplasticity. Martinus Nijhoff Publishers, The Hague-Boston-London (1982) Critescu, N., Suliciu, I.: Viscoplasticity. Martinus Nijhoff Publishers, The Hague-Boston-London (1982)
Metadata
Title
Longitudinal impact into viscoelastic media
Authors
George A. Gazonas
Raymond A. Wildman
David A. Hopkins
Michael J. Scheidler
Publication date
06-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 8/2018
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-018-1372-z

Other articles of this Issue 8/2018

Archive of Applied Mechanics 8/2018 Go to the issue

Premium Partners